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1. A framework for flexibility and extensibility 

 
The theory presented in the PhD thesis ‘Modelling Architectural Design Information by Features’ [van 
Leeuwen 1999], addresses the requirements that must be met by the way design information models are 
defined and structured, and what type of information has to be dealt with in these models. This DS Report 
extracts chapter 7 from this thesis, which develops a framework for information modelling that fulfils these 
requirements. It forms the basis for the design and development of design support systems that incorporate the 

Feature-based modelling approach. Hence, the framework is called the 
Feature-Based Modelling framework or FBM framework. The main issue 
in the development of such a framework is that the information models that 
result from working with this framework should meet the requirements of 
flexibility and extensibility that have been formulated in [van Leeuwen 
1999]. The development of the framework is based on object orientation, 
which is regarded the most appropriate technology to define and structure 
information within the context of this research project. A Feature therefore 
is an object in the framework, its definition and structure are provided in 
the object’s type definition which is called the Feature Type1. Accordingly, 
a design information model is built up from Features of which the 
definitions are formulated in conceptual models of Feature Types, also 
called Feature Type Libraries. The actual design information models, to 
distinguish them from conceptual models with Feature Types, are called 
instance models or Feature models. 

Departing from the above, extensibility means that in the course of 
design, as more information becomes known and gets defined by a 
designer, Feature Types can be defined to meet the particular needs of the 
design context (see figure 1). These new Feature Types can then be added 
to the conceptual model of Feature Types. From these new Feature Types, 
instances can be created in the particular design information model, being 
the actual Features. 

Flexibility (see figure 2) is required both at the level of the 
conceptual model and at the level of the instance model. For the 

extensibility to work, the structure of information defined in Feature Types in the conceptual model needs to 
be adjusted for new Feature Types to fit in. This is the flexibility at the conceptual level. It involves the 
addition and modification of relationships between Feature Types. 

At the level of the instance model, which contains the actual Features, flexibility means that the 
definition of Features, and in particular their inter-relationships, allows restructuring the network of Features in 
accordance with the changing state of the design. This implies that relationships between Features are not 
rigidly defined and can be removed, added or modified at will by a designer. Which, in turn, implies that this 
kind of relationship is not defined at the conceptual level, but at the level of instantiated Features instead. This 
notion of relationships defined at the level of instantiated information models will play an important role in the 
development of the framework. 

The following sections describe the information-modelling framework in terms of the processes that 
take place at the various levels within the framework, and the way information is structured within the 
framework. 

                                                           
1 In fact, this is only one of two points of view from which instantiation takes place in the framework, see section 5 on this 

twofold instantiation. 

Introduction to the theory of Feature-based Modelling that was developed by [van Leeuwen 1999] to 
facilitate the requirements of flexibility and extensibility imposed on design information modelling by 
the dynamic nature of architectural design. 

1 

 

?

 
Figure 1  Extensibility: adding 
new object types to a conceptual 
model. 

 
Figure 2  Flexibility: 
restructuring object types or 
objects in a model. 
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2. Processes in Feature modelling 

 
Essentially, four processes take place in the framework for Feature-based modelling, these are displayed in the 
IDEF-0 schema of figure 4. Although they are presented and discussed here in a successive order, they do not 
necessarily form a linear sequence, as is shown by the back looping data-flows. In Feature modelling 
activities, the described processes will take place in arbitrary order, as is required for the design-case at hand. 
The processes much resemble modelling activities in product modelling and other object oriented approaches. 
Yet, apart from the resulting information structure which in the Feature-based approach differs largely from 
these approaches, the major difference in terms of processes is that the definition of the object type in the 
Feature-based approach also lies in the hands of the designer, and is not privileged to the developer of 
information models. This section introduces the four processes as shown in figure 4. 

The first process to be discussed is called ‘Feature Type definition’ in which domain knowledge is 
transformed into a formal description: a Feature Type. A particular set of knowledge from the domain of 
design is identified as a relevant concept that will serve as a basic entity in modelling and reasoning about 
designs and that will be represented formally by a Feature Type. The Feature Type describes the kind of 
knowledge that is represented by this formalisation and how it is structured. It is later used to create instances 
of this concept in actual design models, where the formalised knowledge is applied in a particular design case. 
How domain knowledge can be formalised and what the resulting structures of information will look like, is 
discussed in more detail in sections 3 to 6. Various approaches that can be followed in defining Feature Types 
are discussed in [van Leeuwen 1999]. 

In the second process, Feature Types are classified into libraries of Feature Types. These libraries in 
fact form the conceptual models that represent domains of design-knowledge and are the basis for modelling 
information in actual design cases. Classification mainly serves two purposes. The first is to help a designer 
organise the formalised body of domain knowledge into categories of Feature Types. The second is to allow 
standardised domain knowledge to be unambiguously accessible by those who conform to the standard and 
aim to use the standardised domain knowledge for modelling purposes and exchange of design information. 

The third of the processes to be discussed is the one where Features are instantiated from Feature 
Types. Feature Instantiation involves the selection from a Feature Type Library of an appropriate Feature Type 
in the context of the current design case, and creating a Feature Instance based on the content-type and 
structure of information as defined in the Feature Type. The Feature Instance is then provided with the actual 
information as applicable for the particular design case, and is related to the structure of Feature Instances that 
are already present in the model representing the design case. Clearly, if no appropriate Feature Type is 
available for the specific circumstances in the current design, a new Feature Type must be defined prior to the 
instantiation procedure. How information is structured and how Features are inter-related is discussed in detail 
in sections 3 to 6, while section 7 discusses more elaborately the issues in instantiation of Feature Types. 

The fourth process taking place in Feature-based modelling and the final one to be discussed here, is 
modification of Feature models. Modification of the information represented in Feature Instances may take 
place in various forms, depending on the way the information is structured in the Feature Instance and in the 
Feature Type, and depending on the effect of the modification as desired by the designer. The information 
present in the Feature Instance can simply be modified by changing, for instance, its numerical value. Another 
way of modifying the model is to change the inter-relationships between Feature Instances, which may result 
in different values for information in the model, or even in differently structured information. Before these 
various ways of modifying a Feature model are discussed further, the Feature-based structure of information is 
examined in the next three sections. 

Four processes facilitate the tasks of Feature modelling: Feature Type definition, Feature Type 
classification, Feature Instantiation, and feature modification. 2 
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3. The Feature-based information structure 

 
The framework for Feature-based information modelling 
defines a three-layered information infrastructure (see 
figure 3). The three layers of abstraction in this model 
accommodate the required functionality of Feature models 
and conceptual Feature models (libraries of Feature Types) 
to enable extensibility and flexibility of these models. The 
dashed box in figure 3 indicates the middle layer 
containing Feature Type definitions. These are either 
Generic Feature Types or Specific Feature Types. The 
difference between the two and their relationship is 
explained in section 3.1; for now it suffices to describe 
Generic Feature Types as standardised and Specific 
Feature Types as customised, or designer-defined, Feature 
Types. The middle layer contains Feature Types collected 
in Feature Type Libraries. The Feature Types define the 
type of information that a Feature may contain and the 
structure of this information. For example, a Feature Type 
called ‘Material’ would have such properties as ‘colour’, 
‘texture’, ‘durability’. Each of these properties are defined 
as types of Features themselves and referred to by the 
‘Material’ Feature Type. This ensures that property-
definitions can be shared by various Feature Types and that 
duplicate definitions of such properties are not necessary. 

The bottom layer of the three-layered model contains the actual information describing a particular 
design. This information is represented in collections of Feature Instances, also called Features in short. A 
collection of Feature Instances forms a Feature model. Feature Instances are instantiations of Feature Types, or 

This section describes three layered infrastructure for defining information concerning Feature Types 
and Instances and three levels of abstraction. 3 

specialisation
instantiated

into

instantiated into

defines format of

Feature Model describing
a particular design in Feature Instances

Meta Layer
defining classes of Feature Types

and classes of Features

Generic Feature Types

Specific Feature Types

 
Figure 3  The three-layered infrastructure of 
Feature-based modelling with three levels of 
abstraction. 

Feature Type
definition

Feature Type
classification

Feature
Instantiation

Feature
Modification

Feature
Type

Domain
knowledge

Meta definition of classes
of Feature types

Feature Type
Library

Feature Type

Feature
Model

Particular
design case
knowledge

Feature
instance

classified
Feature Type
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Figure 4  Activities of Feature modelling. Formalisation of domain knowledge into 
Feature Types, which are classified into libraries of Feature Types. Instantiation of 
Feature Types into Feature Instances comprising Feature models (IDEF-0 schema) 
[van Leeuwen and Wagter 1998]. 
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conversely, Feature Types define the structure and type of information contained in Feature Instances. An 
instance of the Feature Type ‘Material’ would be the Feature named ‘Concrete’, that has the value ‘grey’ for 
the property ‘colour’, the value ‘rough’ for the property ‘texture’, and the value ‘high’ for the property 
‘durability’. Each of these values of the properties are instances of the respective Feature Types and are related 
by reference to the Feature ‘Concrete’. This structure is similar to the structure of property definitions in 
Feature Types, and is to ensure that duplicate instances of such properties are not necessary where usage of the 
same property is actually intended. The colour of another material that should match as closely as possible the 
colour of this concrete would simply refer to the same colour property. Using references for properties that are 
modelled as Features guarantees that such sharing of properties is always possible. 

The top layer in the model in figure 3 is the so-called Meta Layer. This layer defines the format in 
which Feature Types and Feature Instances are to be defined. The format specifies the different kinds of 
Feature Types and Feature Instances that can be defined in the framework: these are classes of Feature Types 
and classes of Feature Instances. The remainder of this thesis will mainly focus on the definition and structure 
of these classes and their relationships to each other and design support systems. Classes of Feature Types are 
defined in section 6, classes of Feature Instances in section 7. 

3.1 Generic versus Specific Feature Types 
As indicated before, the difference between Generic Feature Types and Specific Feature Types is that Generic 
Feature Types are standardised, whereas Specific Feature Types are defined, for instance, by a designer for 
specific purposes. For Feature-based modelling systems, the difference between the Generic and Specific 
Feature Types has only limited relevance. Both categories can be extended with newly defined Feature Types, 
albeit that new Specific Feature Types will probably appear much more frequently than new Generic Feature 
Types. Feature Types can be defined ‘from scratch’, i.e. without an underlying Feature Type from which 
information is inherited, or as a specialisation of another Feature Type. Specialisation can occur within a 
category of Feature Types, but a Specific Feature Type may also be a specialisation of a Generic Feature Type. 

4. A typology of relationships 

 
A survey of relationships between information entities in architectural product models has resulted in the 
distinction of the following kinds of relationships. 

specialisation relationship category 1 
decomposition relationship category 2 
structural dependencies 
adjacency 
tolerance 
dimensional relationship 
positional relationship 
existential dependency 
algorithmic relationship 

 category 3 or 4 

These relationships are categorised into four types, three of which are known from object oriented approaches. 

1. Specialisation 
Specialisation indicates that a given type of Feature is a sub-type of another type. The sub-type inherits 
all characteristics of the super-type and distinguishes itself from the super-type by adding 
characteristics: the result is a specialised type. Often this sort of relationship is denoted as an is_a 
relationship. 

2. Decomposition 
Decomposition indicates another kind of hierarchy, in which information entities2 are divided into 
parts, or components. There is no inheritance, the components just contain a part of the total of 
characteristics. Decompositions are often called has_a relationships. 

                                                           
2 The term ‘entity’ is used to refer to both Feature Types and Feature Instances. The reason for this is that the discussed 

relationships are applicable to both the conceptual and instantiated level of information modelling. 

The various relationships that can exist between entities in an architectural design information model 
are categorised into a limited set: specialisations, decomposition, associations, and specialisations. 4 
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The inverse mechanism of specialisation is called generalisation, while the inverse of decomposition is 
called aggregation. 

3. Association 
Associations are not hierarchical relationships, there is no inheritance, nor division of characteristics. 
This relationship indicates any association of two entities of information that does not fall in either 
categories of specialisation or decomposition. However, a particular type of association is distinguished 
separately and called specification. 

4. Specification 
The above distinguished types of relationships appear in OO approaches to information analysis. A 
fourth type is distinguished in the FBM framework: a specification relationship is a kind of association 
indicating that one entity specifies information about another. A specification is used to model 
information that directly determines the characteristics of a concept. It is not to be confused with 
decomposition, since the specified information does not need to be a part of the concept. An example of 
a specification is a type of Feature called Door for which the manufacturer-details are specified by a 
type called Manufacturer. Note that the specification relationship is directed from the Door to the 
Manufacturer as ‘specified by’ and conversely from the Manufacturer to the Door as ‘specifies’. 

Martin and Odell [1995] distinguish compositional relationships from non-compositional relationships. 
Compositional relationships are further distinguished based on the combination of three properties, 
concerning: 

•= Configuration: whether or not a functional or structural relationship exists between parts or between 
part and object. 

•= Homeomerity: when parts are the same kind of thing as the whole, they are homeomerous. 
•= Invariance: parts are invariant when they cannot be separated from the whole without destroying the 

whole. 

Martin and Odell advance this into a classification of compositional relationships, as shown in table 1. 
Looking at these different kinds of compositions helps to understand the different types of relationships that 
are permitted in the FBM framework in this research project. The table lists how the kinds of compositions 
recognised by Martin and Odell are represented as Feature relationships in the framework of the project in this 
thesis. 

Table 1  Compositional relationships [Martin and Odell 1995] and how they relate to the 
relationships in the FBM framework. 

compositional relationships (Martin and Odell [1995]) Feature relationships 
Component – Integral Object composition 
Defines a configuration of parts within a whole (Scenes – Film; 
Wheels – Cart). 

Decomposition 

Material – Object composition 
Defines an invariant configuration of parts within a whole (Milk – 
Cappuccino; Iron – Car). 
Compared to component – integral object, the parts in this case 
cannot be removed from the object. 

Specification 

Portion – Object composition 
Defines a homeomeric configuration of parts within a whole (Metre 
– Kilometre; Slice - Loaf). 
Compared to the first two, the parts are now of the same kind as the 
object. 

Decomposition 

Place – Area composition 
Defines a homeomeric and invariant configuration of parts within a 
whole (San Francisco – California; peak – mountain). 
Compared to the portion – object composition, here each 
homeomeric piece cannot be removed. 

Decomposition 

Member – Bunch composition 
Defines a collection of parts as a whole (Tree – Forest; Ship – 
Fleet). 
In the composition relationships above, the parts bear a particular 
functional or structural relationship to one another or to the object 
they comprise. In the member – bunch composition, membership of 
a collection is the only requirement for a part to be in the 
composition. 

Decomposition 
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compositional relationships (Martin and Odell [1995]) Feature relationships 
Member – Partnership composition 
Defines an invariant collection of parts as a whole (Stan Laurel – 
Laurel and Hardy). 
As compared to member – bunch compositions, these members 
cannot be removed from the whole. 

Decomposition 

All of the above kinds of compositions are modelled in the FBM framework as Decomposition relationships, 
except for the Material – Object relationship. In the perspective of this project, material characteristics are 
specifications of objects that are modelled with the Specification relationship. The other kinds of compositions 
are not further distinguished by the type of the relationship. However, the specific meaning of the relationship 
is to be expressed using the role name of the relationship. 

Some examples of non-compositional kinds of relationships are given by Martin and Odell in contrast 
with the compositions. These are listed in table 2 and again compared to the Feature relationships. 

Table 2  Non-compositional relationships [Martin and Odell 1995] and how they relate to 
the relationships in the FBM framework. 

non-compositional relationships (Martin and Odell [1995]) Feature relationships 
Topological inclusion 
Examples: Customer in the Store; Meeting in the Afternoon. 

Association 

Classification inclusion 
Examples: Gone with the Wind is part of the set of objects of the 
class Book. 

Instantiation 

Attribution 
Examples: Lighthouse has Height and Weight, yet Height is not 
part of a Lighthouse. 

Specification 

Attachment 
Examples: Toes are attached to Feet, and are also part of Feet 
(= composition), yet Earrings are attached to Ears, but are not part 
of Ears. 

Association 

Ownership 
Examples: A Bicycle has Wheels and Wheels are part of a Bicycle 
(= composition), yet a Girl has a Bicycle, which is not a part of the 
Girl. 

Association 

The Classification inclusion is clearly a Instantiation in the FBM framework. From the other 
relationships, the attribution is modelled as a Specification relationship between Features, where, in the given 
example, the Height specifies a property of the Lighthouse. All other relationships are interpreted in this 
project as Associations between Features: the Meeting is associated with the Afternoon, the Bicycle is 
associated with the Girl. 

An equivalent of the Specialisation or inheritance relationship is not mentioned in the classification by 
Martin and Odell. 

Application and interpretation of relationships 

Relationships in the framework can be distinguished at two levels. At the typological level, relationships are 
defined within Feature Types. A relationship may be optional, but in principle a relationship at typological 
level implies that all instances of the particular type will instantiate the relationship. In object oriented 
approaches, this level of relationship is defined using the first three categories shown above. 

In addition, the framework also allows relationships between instances to be defined at the level of 
instances only, i.e. without being defined at the typological level. This new aspect in information modelling 
does not normally appear in OO approaches. It is further discussed in section 8, after the introduction and 
discussion of the classes of Feature Types and Feature Instances that are defined in the framework’s Meta 
Layer. 

Because Feature models, especially when using these instance level relationships, allow very flexible 
structures of Feature relationships to develop during a design process, it is necessary that decompositions, 
associations, and specifications can be recognised by the modelling system. This is true in particular if the 
system is to use this interpretation of the relationships in order to find certain semantics in the model. Without 
having to attempt to interpret the semantics given by a designer to these relationships by means of labels, role 
names, the system can already distinguish, for instance, which relationships are merely associations, and which 
are specifications with more detail about the object being modelled. 

For a deeper understanding of the various relationships in a Feature model it is necessary to have 
knowledge about the exact meaning of the individual relationships between Features, which can only be 
accessed by looking at the role names that are given to these relationships by the designer. Automated 
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interpretation, for instance for the purpose of propagating operations on one Feature to other Features that are 
related with a specific role to that Feature, requires that the role names of relationships are also known in 
advance to the design system. This implies that classification and standardisation of role names is necessary. 

5. Twofold instantiation 

 
The three-layered information infrastructure (see figure 3) introduced a double instantiation relationship. 
Therefore the usage of a consistent terminology is required, to distinguish between the different levels of 
information definition and the two sorts of instantiation. The first sort of instantiation relationship, following 
the object oriented paradigm, is found in the model between the Feature Types and the Feature Instances. This 
is an instantiation relationship seen from the point of view of a designer working with the types and instances. 
When modelling a design, a designer selects a Feature Type and creates an instance based on the formal 
definition included in the type. In this perspective, the Feature Instance is an instance of the Feature Type. 

However, because Feature Types can be 
defined ‘on the fly’ by designers, the structure of the 
Feature Instances cannot be known in advance. Yet 
in order to allow a computer-system to work with the 
new types and instances, the structure of both types 
and instances must follow certain rules. This is 
where the second sort of instantiation appears, 
because the type of content and the type of structure 
of the Feature Types and Feature Instances must be 
defined formally. Following the object oriented 
paradigm again, this is done in the Meta Layer by 
means of two groups of classes: classes of Feature 
Types and classes of Feature Instances. As a result, 
from the viewpoint of the computer-system, the 
Feature Types are instances of the classes of 
Feature Types and the Feature Instances are 

instances of the classes of Feature Instances. Hence, the relationship between the Feature Types and the 
Feature Instances is no longer an instantiation relationship. Yet, the designer wants to retain this point of view 
on the instantiation relationship. Therefore the system should maintain the content and structure of the Feature 
Instances in such a way that they can be presented to the designer as instances of the Feature Types. Internal to 
the system, however, both Feature Instances and Feature Types are instances of the classes defined in the Meta 
Layer. 

To avoid confusion, the instances from the point of view of the system will be called ‘objects’, while 
the instances from the point of view of the designer will retain their name of ‘Feature Instances’. However, for 
both points of view the term instantiation will remain to be used. 

Following the schema in figure 5 and the terminology of objects and instances as mentioned, it can be 
concluded that a Feature Instance is an instance of a Feature Type, but at the same time it is an object of the 
class of Feature Instances. A Feature Type is an object of the class of Feature Types. Instantiation, thus, takes 
place in two occasions in the system’s point of view: instantiation of a class of Feature Types into an object of 
this class; and instantiation of a class of Feature Instances into an object of this class. The latter kind of 
instantiation is the same event of instantiation that takes place in the designer’s point of view: instantiation of a 
Feature Type into a Feature Instance. 

The three-layered information infrastructure for Feature modelling introduces two kinds of 
instantiation relationships: both Feature Types and Feature Instances are instantiations of the classes in 
the framework. 

5 

instantiation from the system’s
point of view

Class of
Feature Types

Class of
Feature Instances

Feature Type Feature Instanceinstantiation
from the
designer’s
point of view

= an object of
a class of
Feature Types

= an object of
a class of
Feature Instances

 
Figure 5  Two kinds of instantiation: from the system’s 
point of view and from the designer’s point of view. 
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6. Classes of Feature Types 

 
The sections 6 to 8 discuss the classes of Feature Types and classes of Feature Instances that are defined in the 
Meta Layer of the framework. These classes are presented, using the EXPRESS-G3 notation technique, in 
diagrams of four schemata: a schema FeatureTypes, a schema FeatureLibraries, a schema 
FeatureInstances, and a schema FeatureModels. 

Feature Types are the formal representations of domain knowledge. They contain the definition of 
information concerning a particular concept, a typological aspect of architectural design. Chapter 6 in [van 
Leeuwen 1999] concludes with a proposition for a categorisation of the domain of architectural design on the 
basis of which Feature Types can be defined. This categorisation concerns the semantic content of the Feature 
Types from the architectural point of view; it does not concern the content of Feature Types from an 
information technology point of view. The latter point of view requires different considerations, although the 
end-result must correspond with the former point of view. 

From the information technological point of view, a Feature Type defines what type of content a 
Feature may have and in what structure it is organised. Also the relationships with other Feature Types and 
therefore the types of relationships that can be found between Features are defined in the Feature Type4. From 
the designer’s point of view, a Feature Type is said to be instantiated into a Feature Instance. Therefore, the 
classes of Feature Types and the classes of Feature Instances work tightly together. 

Six pairs of classes of Feature Types and Instances are defined in the framework. These six classes are 
designed to cover the information modelling needs that are raised by the categorisation of Feature types in 
chapter 6 in [van Leeuwen 1999]. The classes consecutively allow the modelling of: 

•= simple data types 
for modelling simple values in terms of, e.g., string and numbers; 

•= enumerated data types 
for modelling enumerated symbolic values, 
e.g. transparent – translucent – opaque; 

•= complex, or aggregated, types 
for modelling concepts that have a more complex structure, these consist of relationships to other 
concepts; 

•= geometric data types 
for modelling concepts that represent a geometric shape; 

•= constraints 
for modelling constraints on concepts, e.g., the structural dependency between a column and a beam; 

•= procedural knowledge 
for modelling concepts that represent behaviour; this uses event handling as a basis. 

Each of the above kinds of information is represented by a pair of classes for the Feature Type and the 
corresponding Feature Instance. These are formally defined and can be graphically and textually represented. 

Graphical and textual notation of the classes 
Working with a design support system that is based on the Feature-based framework, it will be the designer 
who is defining Feature Types. The design support system will then have to deal with the newly defined types 
of information. For the communication of the Feature Type definitions between designer and system, it is 
necessary to use representations of them that can be understood by both. As is usual in the area of Information 

                                                           
3 EXPRESS-G is the graphical counterpart of EXPRESS, which is the data-definition language defined in ISO-10303 

[ISO TC184 1994c], better known as STEP. The diagrams in this thesis use EXPRESS-G with some minor additions, for 
instance for the representation of the elements in an ‘enumeration’ entity. 

4 In section 8 it is argued that additional relationships can be defined at the level of Feature Instances. 

This section describes in detail the definition of the classes of Feature Types, which determine the 
information that can be defined in terms of Feature Types. 6 
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and Communication Technology, a graphical notation technique as well as a textual notation technique5 is 
used in this research project to represent both Feature Types and Feature Instances. Existing notation 
techniques have been found inapt for the representation of the specific characteristics of these entities in the 
Feature-based framework. Along with the definitions of the classes in this and the next section, the graphical 
and textual notation technique that has been defined for these classes are presented and examples are given. 

The textual notation reminds of the declaration of classes in OO languages such as C++. It’s syntax is 
defined using the Wirth Syntax Notation (WSN). Some choices in the syntax definition of the textual notation 
have been made in an arbitrary, though well considered, manner, such as the choice of valid characters for 
identifiers in the framework and the representation of dates. This kind of decision is not discussed here at 
length, since the eventual outcome is not relevant at this stage of the framework 
development. 

The graphical notation is in many ways similar to other graphical notation-
techniques, but aims to be sufficiently different in order to avoid confusion with other 
techniques like the EXPRESS-G notation that is used for the classes in the Meta Layer. 
The main entities in the graphical notation are rounded boxes representing Features and Feature Types, 
containing their identifier. 

Basic elements of the notation 

The following basic elements in the notation are not further expanded in the syntax specifications: string, 
number, integer, real, boolean, date, and identifier. In the syntax specifications, they are printed 
in italics. Their meaning is briefly described here. A string is a character-string containing any sequence of 
characters, enclosed in double quotes ("). Double quotes can be included in a string by preceding them with a 
backward slash (\). A number is any numeric value, including integers and reals. Boolean values are 
indicated by the keyword boolean. They can be either of the literals true and false. A date is a numeric 
representation of a date value, in this format: yyyymmdd. 

An identifier is a character-string starting with an alphabetic character and containing any alpha-
numeric characters and/or any of the following characters: ~ # $ _. It may contain spaces and line-feeds in the 
graphical notation, but in the textual notation these are to be omitted or replaced with the underscore character 
(_). 

6.1 The base class: FeatureType 
The classes of Feature Types are based on an abstract6 class called FeatureType. This base class defines 
characteristics applicable to all Feature Types, including their identification, the name of their author, their 
date of definition, and a description. The base class is graphically presented in figure 6. 

                                                           
5 Examples of textual representations are programming languages such as Pascal, C, Lisp, Prolog, et cetera, and data 

definition languages such as the EXPRESS language developed in ISO 10303 or STEP. These textual representations 
are formal and explicit enough to be unambiguously interpreted by computer-systems, and still readable enough for 
humans. They form the most basic medium of communication between human and computer. 

Examples of graphical representations are the notation techniques developed for data modelling methods, such as IDEF, 
NIAM, EXPRESS-G, and the OO approaches developed by, e.g., Booch, Meyer, Rumbaugh, et cetera. Originally, the 
purpose of these notation techniques was to support software developers in the early stages of software design. 
However, they are now evolving to become the main medium in advanced interfaces for software development. 

6 An abstract class, in object oriented contexts, is a class that can not be instantiated, i.e. no objects of such a class can be 
created. The purpose of this kind of class is merely to serve as a super-class for sub-classes that are derived from the 
super-class, allowing these sub-classes to share common characteristics. A base class is a super-class that itself has no 
super-classes. 

Number Of 
HingesI

 

FeatureType 
(abs)

Date

Author

Description

typeCreated

typeAuthor

typeDescr3,1
[specialisation]

2,1
TypeID

typeID STRING

REAL

 
Figure 6  Diagram 1 of Schema FeatureTypes: Definition of the abstract base class 
FeatureType. 
(This is a preliminary diagram, for the eventual diagram, see figure 19 on page 26.) 
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Feature Types are identified by their typeID, which is an instance of the class TypeID, see figure 7. A 
TypeID is built up using a rather flat structure, which is related to the way Feature Types are to be classified 
in Feature Type Libraries. The TypeID has a typeName and a sectionID, which in turn has a 
sectionName and a libraryName. This structure conforms to the categorisation of Feature Types in 
sections within Feature Type Libraries (see also figure 22 on page 29). 

TypeIDs of Feature Types are used for reference within the definition of other Feature Types and 
within the context of Feature Instances in Feature models. Within its scope the TypeID should be unique. This 
is likely to be a precarious matter, since designers are free to define their own libraries of Feature Types and, at 
the same time, want to use standardised or commercial Feature Type Libraries. Having computers generate 
unique IDs is in itself not a complicated issue, yet generating meaningful unique IDs obviously is. 

Notation of the abstract base class FeatureType 
Since the base class FeatureType is an abstract class, objects of this class cannot be created. Therefore this 
class does not need a graphical notation. However, the notation of the attributes of the FeatureType class is 
important, since they form the basis for the notation of all other types. Referring to figure 6, the attributes of 
the FeatureType class are: typeID; typeCreated; typeAuthor; and typeDescr. The typeID is built 
up from a libraryName, a sectionName, and a typeName. 
 

Syntax of the attribute typeID of the class FeatureType 
typeID = sectionID ‘.’ typeName .

sectionID = libraryName ‘.’ sectionName .
libraryName = identifier .
sectionName = identifier .

typeName = identifier .

The libraryName and sectionName are included in the typeID to allow a Feature Type to be 
uniquely identified. In the Graphical notation of the Feature Types, the typeName is sufficient to identify a 
type, given that all other types within the context of a diagram are defined in the same section and library and 
the section and library are named in the caption of the diagram. If more than one section is represented in the 
diagram, the sectionNames need to be included in the typeIDs of those types that are defined in a section 
different from the section mentioned in the caption of the diagram. The same is true for the level of libraries: 
types from libraries other than the one mentioned in the diagram’s caption need to include the libraryName 
in their typeID. 

In examples, the sectionName and libraryName are not required in neither graphical nor textual 
notation, as is demonstrated in most of the examples throughout this chapter. The other attributes of 
FeatureType do not have a graphical notation, but are textually represented as is shown below.  
 

TypeID TypeName

SectionID

sectionID

typeName

SectionName

LibraryName

sectionName

libraryName

2,1 (1,3,4,7)

STRING

 
Figure 7  Diagram 2 of Schema FeatureTypes: Definition of TypeID. 
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typeCreated = ‘TypeCreated’ ‘{’ date ‘}’ .
typeAuthor = ‘TypeAuthor’ ‘{’ string ‘}’ .
typeDescr = ‘TypeDescr’ ‘{’ string ‘}’ .

The general structure for the syntax of a Feature type definition is given below. The attribute 
typeBehaviour is included here in the textual notation, but defined only after the introduction of the 
subclass Handler Feature Type in section 6.2.6 on page 27 (see also figure 19 on page 26). 
 

General syntax for the definition of Feature Types 
type-def = simple-type-def | enum-type-def |

complex-type-def | geometric-type-def |
constraint-type-def | handler-type-def .

standard-body = typeCreated typeAuthor typeDescr
[ typeBehaviour ] .

 

6.2 Subclasses of the class FeatureType 
The diagram in figure 8 shows the set of Feature Type classes that can be instantiated. All of these subclasses 
inherit the attributes of the base class FeatureType. There are six subclasses of Feature Types. Simple 
Feature Types can be used for the definition of Feature Types that represent simple data types. Enumeration 
Feature Types are used for the definition of a data type that is defined by a list of names, enumerating the 
possible values that instances of that data type may assume. The class of Complex Feature Types allows the 
definition of structures of Feature Types, using the various kinds of relationships as discussed in section 4. 
Geometric Feature Types are defined for the specific representation of geometric data. Constraint Feature 
Types provide the ability to define constraints on the values of Feature Instances and on the relationship 

1
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Simple 
FeatureType Unitunit

String; 
Integer; 

Real; 
Boolean

default

5,2 
SimpleDomaindomain

6,2 
SimpleDefaultbaseType

STRING

BaseType

3,1 (1)

Complex 
FeatureType 4,1 Component

has S[0:?]

superType
SuperType 2,1 TypeID

typeID

5,4 
ComplexDomain

6,4 
ComplexDefaultdefault

domain

Enumeration 
FeatureType

enumeration L[0:?] Enumerated
Item

6,3 
EnumDefault

5,3 
EnumDomaindomain

default

parameterList

constraintConstraint 
FeatureType

7,1 Declared 
Parameter List

7,1 Declared 
Parameter List

parameterList

Geometric 
FeatureType

paramGeometry

parameterList

Handler
FeatureType

procedure

3,2 (1)
7,1 Declared 

Parameter List

 
Figure 8  Diagram 3 of Schema FeatureTypes: Definition of the subclasses of 
FeatureType. 
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between Feature Instances. Handler Feature Types, finally, are used for the definition of behaviour, they will 
be used to attach behaviour to the level of Feature Types and the level of Feature Instances as well. 

In the remainder of this section, these various subclasses of FeatureType are discussed in more detail 
and their notation and examples are presented. 

6.2.1 The class SimpleFeatureType 
This class facilitates the definition of Feature Types that represent simple data such as integers, reals, character 
strings, and boolean data. The type of data that the Feature Type defines is specified in the value of the 
baseType enumerated attribute. Every Simple Feature Type must specify its base type. A unit for the data 
may be specified if relevant, e.g. m2 or W/m2, and a default value for the simple data can be included. Simple 
Feature Types may also specify a domain for the values that instances may assume. Domains and defaults are 
discussed in detail in section 6.3. 

Notation of the class SimpleFeatureType 
The four different simple data types that can be defined each have, for reasons of legibility, a distinct notation, 
both graphical and textual. The general syntax for a Simple Feature Type definition is as follows: 
 

General syntax for the definition of Simple Feature Types 
simple-type-def = string-type-def | integer-type-def |

real-type-def | boolean-type-def .

The graphical notation for Simple Feature Types with base-type string consists of a rounded box with 
the typeID of the Feature Type and a letter S in a square on the left. 

String
Feature TypeS

 
Syntax for the definition of string-based Simple Feature Types 

string-type-def = ‘string’ typeID ‘{’ string-body ‘}’ .
string-body = standard-body [ string-domain-decl ]

[ string-default-decl ] .
string-domain-decl = ‘TypeDomain’ ‘{’ string-domain ‘}’ .
string-default-decl = ‘TypeDefault’ ‘{’ string ‘}’ .

Domain and default for Simple Feature Types are not graphically represented. The syntax for domains 
can be found in section 6.3. 
 

Example of a string-based Simple Feature Type 

Spatial
FunctionS

string Briefing.SpatialPlan.SpatialFunction {
TypeCreated {19980704}
TypeAuthor {"Jos van Leeuwen"}
TypeDescr {"Function of a space"}
TypeDefault {"Living"}

}

For reasons of brevity and clarity, in the remaining examples the standard-body part of the definition, 
including the date, author, and description of a type, is left out. Also, the libraryName and sectionName, 
in the above example Briefing and SpatialPlan respectively, are omitted. For the other Simple Feature 
Types, the syntax is defined similarly, as is shown in the following. 

Simple 
FeatureType

BaseType

Unit
unit

String; 
Integer; 

Real; 
Boolean

default

5,2 
SimpleDomaindomain

6,2 
SimpleDefaultbaseType

STRING

3,1 (1)

 
Figure 9  Excerpt from Diagram 3 of Schema FeatureTypes (see figure 8 on page 15): 
Definition of the class SimpleFeatureType. 
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Integer
Feature TypeI

 
Syntax for the definition of integer-based Simple Feature Types 

integer-type-def = ‘integer’ typeID ‘{’ integer-body ‘}’ .
integer-body = standard-body [ numeric-domain-decl ]

[ integer-default-decl ] [ unit-decl ] .
numeric-domain-decl = ‘TypeDomain’ ‘{’ numeric-domain ‘}’ .
integer-default-decl = ‘TypeDefault’ ‘{’ integer ‘}’ .

unit-decl = ‘TypeUnit’ ‘{’ string ‘}’ .

 
Example of a integer-based Simple Feature Type 

Number Of 
HingesI

integer NumberOfHinges {
TypeDomain {2,3,..5}
TypeDefault {3}

}

 
Real

Feature TypeR
 

Syntax for the definition of real-based Simple Feature Types 
real-type-def = ‘real’ typeID ‘{’ real-body ‘}’ .

real-body = standard-body [ numeric-domain-decl ]
[ real-default-decl ] [ unit-decl ] .

real-default-decl = ‘TypeDefault’ ‘{’ real ‘}’ .

 
Example of a real-based Simple Feature Type 

AreaR

real Area {
TypeDomain {[0,->>}
TypeDefault {25.9}
TypeUnit {"m2"}

}

 
Boolean

Feature TypeB
 

Syntax for the definition of boolean-based Simple Feature Types 
boolean-type-def = ‘boolean’ typeID ‘{’ boolean-body ‘}’ .

boolean-body = standard-body [ boolean-domain-decl ]
[ boolean-default-decl ] .

boolean-domain-decl = ‘TypeDomain’ ‘{’ boolean-domain ‘}’ .
boolean-default-decl = ‘TypeDefault’ ‘{’ boolean ‘}’ .

 
Example of a boolean-based Simple Feature Type 

IsExteriorB
boolean IsExterior {

TypeDefault {true}
}

 

6.2.2 The class EnumerationFeatureType 
A simple data type that cannot be defined using the class SimpleFeatureType is the enumeration. 
Enumerations are data types that serve to identify a single selection from an enumerated list of names. The 
Enumerated Feature Type includes an ordered set of character strings denoting the identifiers that instances of 
the enumeration may assume as their value. A default value for the enumeration type can be included, as well 
as a domain for the value of instances. A domain for this Feature Type, that already specifies a range of 
possible values, seems redundant or even irrelevant, but is included for completeness. It may bear relevance in 
cases where a (temporary) limitation on the enumeration is required. 

Enumeration 
FeatureType

enumeration L[0:?] Enumerated
Item

6,3 
EnumDefault

5,3 
EnumDomaindomain

default

3,1 (1)

STRING

 
Figure 10  Excerpt from Diagram 3 of Schema FeatureTypes (see figure 8 on page 15): 
Definition of the class EnumerationFeatureType. 
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Notation of the class EnumerationFeatureType 
The class of Enumeration Feature Types is graphically noted by a letter E in the square of the symbol. Its 
textual notation is similar to those of the Simple Feature Types, but includes the ordered set of enumerated 
identifiers preceded by the label TypeItems. In the graphical notation, the enumerated identifiers are not 
necessarily made visible, but can be indicated by listing all identifiers and connecting this list with the 
enumeration symbol using an arrow line. The syntax for domains can be found in section 6.3. 

Enum
Feature TypeE

 
Syntax for the definition of Enumeration Feature Types 

enum-type-def = ‘enum’ typeID ‘{’ enum-body ‘}’ .
enum-body = standard-body enum-decl [ enum-domain-decl ]

[ enum-default-decl ] .
enum-decl = ‘TypeItems’ ‘{’ enum-items ‘}’ .
enum-items = identifier { ‘,’ identifier } .

enum-domain-decl = ‘TypeDomain’ ‘{’ enum-domain ‘}’ .
enum-default-decl = ‘TypeDefault’ ‘{’ identifier ‘}’ .

 
Example of an Enumeration Feature Type 

TypeOfWallE
Single
Cavity
Compound

enum TypeOfWall {
TypeItems {Single, Cavity, Compound}
TypeDefault {Compound}

}

 

6.2.3 The class ComplexFeatureType 
Information that is in any sense structured in a more complex manner needs to be defined using the class 
ComplexFeatureType. This class defines a simple composition structure using a set of Components. A 
Component is a reference to another Feature Type; Complex Feature Types do not contain other Feature 
Types (compare object attributes in OO approaches), but merely refer to other Feature Types. This restriction 
is very valuable for the resulting flexibility of information models, mainly because it allows Feature Types to 
share components. However, this approach also introduces some potential complications, in particular for the 
integrity management of the Feature Types and Instances, for example when Feature Types are modified. A 
similar structure of references is found at the instance level of Complex Features, which allows Feature 
Instances to share components. An example of such a structure is given in figure 31 on page 36. 

The usage of ComplexFeatureType can lead to both tree-like (hierarchical) and lattice-like 
information structures. The contents and structure of Components are discussed in detail in the next 
subsection and presented in figure 12. A default for the Complex Feature Type can be specified, which refers 
to an instance within the same library-section; the existence of instances in Feature Type Libraries is addressed 
in a separate discussion in section 6.4. A Complex Feature Type also has an optional domain for the instances 
of the type, referring to a set of instances within the same library-section (see also the discussion and diagrams 
for defaults and domains in section 6.3). 

A ComplexFeatureType optionally relates to a SuperType, which refers to the TypeID of a 
Feature Type forming the ComplexFeatureType’s supertype. This establishes single inheritance of 
Complex Feature Types. One restriction is in effect here: only ComplexFeatureTypes can be the supertype 
of a ComplexFeatureType. This restriction follows the fact that Complex Feature Types can themselves 
not contain data in the way for instance a SimpleFeatureType contains data. ComplexFeatureTypes 
only contain references and can therefore not inherit from, e.g., SimpleFeatureTypes. Other Feature Types 
than ComplexFeatureTypes are included in the ‘inheritance-tree’ by reference through the components. A 
Complex Feature Type that has a supertype inherits all the components of its supertype and those of its 
supertype’s supertypes. 

Complex 
FeatureType 4,1 Component

has S[0:?]

superType SuperType 2,1 TypeID
typeID

5,4 
ComplexDomain

6,4 
ComplexDefaultdefault

domain

3,1 (1)

Figure 11  Excerpt from Diagram 3 of Schema FeatureTypes (see figure 8 on page 15): 
Definition of the class ComplexFeatureType.
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The support-class Component 
Complex Feature Types (objects of the class ComplexFeatureType) are decomposed into objects of the 
supporting class Component. Each component of a Complex Feature Type has a role indicating the kind of 
relationship the component has with the Complex Feature Type. The role is specified by the roleType (an 
enumerated value indicating a decomposition, association, or specification type of role; note that specialisation 
is not a valid role type, this relationship is modelled using the superType attribute of a Complex-
FeatureType) and identified by its rolename, which is a string of characters. 

Components are either TypeComponents or InstanceComponents. TypeComponents are 
components that are declared at the type level and given values at instantiation time. The actual data that 
define these components are specified during instantiation and stored in a Feature model, using the 
Component class of the FeatureInstances schema (see figure 29). At the type-level, the TypeComponents 
merely declare the structure of the Complex Feature Type. An example of the usage of a TypeComponent is 
the declaration of a ComplexFeatureType called material which has a TypeComponent called 
colour. This declaration specifies that all materials have a colour, without providing any value for the colour. 

In a Complex Feature Type, TypeComponents can have multiple occurrences, which, at the type 
level, may be limited in number by means of the Cardinality. The cardinality of a component specifies a 
minimum and maximum number of occurrences that a component should have. During design, the cardinality 
should, however, not be enforced upon the designer. If the cardinality of a component is not specified, this 
means that the cardinality is [0..1], which is to say that the component is a single, but optional, component. 
Components that are not supposed to be optional must specify the cardinality; for single components this 
means a cardinality of [1..1]. 

The values that a component can assume are specified by its domain, and it can also be given a default 
value. Note that both domain and default override, in the context of the Complex Feature Type, the domain 
and default defined for the Feature Type referred to by the component. However, the contents of both domain 
and default must, of course, be in accordance with the Feature Type the component refers to (the different 
kinds of domains and defaults are presented in section 6.3). 

An example to illustrate the function of the cardinality in a component is the relationship of a wall with 
several elements in the wall. The actual elements in a specific wall are instances of a component in the 
Complex Feature Type defining the wall. This component refers to the TypeID of the Feature Type defining 
the elements; it has a role with, for instance, the roletype Decomposition and a rolename ‘element’; 
and it has a cardinality that specifies a minimum of 0 elements with no upper limit: [0..?]. This example is 
worked out in more detail on page 21 where the graphical and textual notation of the definitions of Complex 
Feature Types is presented. 
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Figure 12  Diagram 4 of Schema FeatureTypes: Definition of the support class 
Component for Complex Feature Types. 
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InstanceComponents, as opposed to TypeComponents, do not merely declare the structure of a 
Complex Feature Type, they also define the values that are contained in the components of this structure. This 
means that the value of such a component is defined for all instances that are to be created from the particular 
Complex Feature Type. For example, a Complex Feature Type called wooden beam would have a 
component of a type called material, but this component should always represent the characteristics for the 
material wood. Therefore this component does not refer to the TypeID of a Feature Type called material, 
but rather to the FeatureID of the Feature Instance called wood of the Feature Type material. This 
instance must be stored in a Feature Type Library, since it is referred to directly in the definition of Feature 
Types. Thus, Feature Type Libraries do not only contain definitions of Feature Types, but also definitions of 
Feature Instances that have significance at the type-level7. These Feature Instances can also be referred to at 
the instance level. More on this aspect is found in section 6.4. InstanceComponents, like Type-
Components, can refer to multiple Feature Instances. 

Because this part of the definition of the Complex Feature Type represents an invariant information 
structure, the cardinality for this relationship need not be defined. Although the type of the Feature Instances 
that participate in an InstanceComponent is not specified for the component, they should all be of the same 
type. 

Components in a Complex Feature Type can refer to any other class of Feature Type, including the Geometry, 
Constraint, and Handler Feature Types. These three types, which are defined further on in this section, may 
accept parameters for their functionality and behaviour. It is by means of these parameters how information is 
communicated from the Complex Feature Type and its properties to, for instance, a geometry component that 
is to represent that Feature Type. 

For example: a Complex Feature Type called Door may be defined with a specification by two 
components h and w of the types Height and Width respectively, and an association to a type 
DoorGeometry that represents the door geometrically. The DoorGeometry must somehow be related to the 
door’s height and width, which is done by passing the components h and w as parameters to the 
DoorGeometry component. This example is elaborated after the definition of the Geometric Feature Type on 
page 23. 

Notation of the class ComplexFeatureType 
Complex

Feature Type
 

Syntax for the definition of Complex Feature Types 
complex-type-def = ‘complex’ typeID [ ‘(’ super-typeID ‘)’ ]

‘{’ complex-body ‘}’ .
super-typeID = typeID .
complex-body = standard-body [ complex-domain-decl ]

[ complex-default-decl ]
{ decomp-decl | assoc-decl | spec-decl } .

complex-domain-decl = ‘TypeDomain’ ‘{’ complex-domain ‘}’ .
complex-default-decl = ‘TypeDefault’ ‘{’ featureID ‘}’ .

decomp-decl = ‘Has’ component-decl ‘;’ .
assoc-decl = ‘Assoc’ component-decl ‘;’ .
spec-decl = ‘Spec’ component-decl ‘;’ .

component-decl = ( type-component-decl | inst-component-decl ) .
type-component-decl = typeID roleName [ cardinality ]

[ ‘{’ domain ‘}’ ] [ param-list ]
[ ‘=’ default ] .

inst-component-decl = roleName [ ‘[’ integer ‘]’ ] ‘=’ featureID .
roleName = identifier .

cardinality = ‘[’ number ‘..’ ( number | ‘?’ ) ‘]’ .
domain = string-domain | numeric-domain | boolean-domain |

enum-domain | complex-domain .
default = string | number | boolean | featureID .

Parameters can be passed at the instance level or at the type level. Passing parameters at the type level means 
that the role names of components of a Complex Feature Type are passed as parameters and that all instances 
of that Complex Feature Type use this way of passing parameters. The above example shows this approach. 
Another form of passing parameters at the type level is to pass identifiers of Feature Instances created at the 
type level as parameters. This form is necessary, for instance, when constant values must be passed at the type 

                                                           
7 This aspect of the framework is to some extent comparable to the usage of, for instance, static data in class declarations 

in C++. 
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level; Feature Instances are required to provide these constant values. The issue of Feature Instances at the 
type level is further discussed in section 6.4. 

Passing parameters at the instance level is discussed in section 7.2 on page 36. Parameters passed at the 
instance level override parameters that are passed at the type level. The attribute parameter is defined on 
page 37. 

The syntax for the class ComplexFeatureType provides the possibility to include, in parentheses 
after the identifier of the type, the typeID of the super-type for the defined Feature Type, denoting a 
Specialisation relationship. The relationships to the components of the Complex Feature Type are textually 
denoted in the body of the notation by three keywords; Has, Assoc, and Spec, for respectively 
Decomposition, Association, and Specification relationships. These relationships are further declared by 
specifying the typeID of the component, its role name, and optionally its cardinality, domain, and default. 

The term featureID, used for the defaults and instance components in 
a Complex Feature Type, is defined in section 7.1 on page 32. The term 
param_list is defined in section 7.2 on page 37. 

Before an example of a Complex Feature Type is presented, the graphical 
notation of the different relationships need to be defined. Relationships are 
shown by a line connecting the two related Feature Types. The relationships 
are to be interpreted bi-directional, yet one direction is emphasised and given a 
roleName. The emphasised direction of a relationship is graphically marked 
by a symbol at the end of the line. This symbol also indicates the type of the 
relationship as is shown in figure 13. 

Specialisation relationships can be abbreviated by joining the two 
symbols of supertype and subtype, as shown in figure 14. The Feature 
Type at the beginning of the line is also the type that, in the textual 
notation, contains the relationship as a component. Yet, in the case of a 
specialisation, it is the subtype at the end of the line that declares the 
relationship in the textual notation. Note that specialisation relationships 
can only be modelled through the super-subtype construction of Complex 
Feature Types. 
 

Example of a Complex Feature Type 

Space

Room Wall

Wall
Element

enclosed
By [0..?] element

[0..?]

AreaRarea

real Area {
TypeDefault {0.0}

}

complex Space {
Spec Area area {[12,->>} = 27.5;

complex Room(Space) {
Assoc Wall enclosedBy[0..?];

}

complex Wall {
Has WallElement element[0..?];

}

complex WallElement {
}

In the above example, the Complex Feature Type Space has a specification relationship to the type 
Area with the role named area. The domain for this specification is such that the minimum area for the space 
is 12, and its default is 27.5. Both domain and default are given for the component area to override any 
domain and default defined in the type Area. 

Note that the Feature Type WallElement is a Complex Feature Type that has no components. This is 
to demonstrate and remind that the definition of Feature Types is not a determined process, but is an ongoing 
activity during the design process. The details regarding the composition of the wall elements will be specified 
in later stages during design. Perhaps the type WallElement will be replaced by another, readily detailed 
Feature Type. 

The support class DeclaredParameterList 
The three classes of Feature Types that remain to be defined, Geometric, Constraint, and Handler Feature 
Types, all use parameters to provide either external or internal processes with access to the information in a 
Feature model. In the case of Geometric Feature Types, they provide an external, parametric, geometric 
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Figure 14  Abbreviated inheritance 
relationship. 
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modeller with the parameters required to generate the desired geometries. Handler Feature Types contain 
procedures that require access to the Features available in a model. This communication of Feature data to 
those processes is done using lists of parameters. The support class DeclaredParameterList is defined to 
allow those lists of parameters to be declared; it is used to specify the type of parameters that will be used by 
the various processes. 

A DeclaredParameterList is an ordered list of parameter declarations. Ordered, because the order 
of the parameters in this list is important for passing them to the accessing process. Parameter declarations 
consist of a name for the parameter and the identifier of the Feature Type that the parameter must be an 
instance of. If this type is not specified, then any type of Feature Instance may be passed for this parameter; the 
parameter is then untyped. Figure 15 shows the definition of the support class DeclaredParameterList. 
The list of parameters should at least contain one parameter, but may be of variable length, meaning that the 
parameter of the last declared type may be passed repeatedly. If this is the case, the flag variableList is set 
to True. 

Notation of declared parameter lists 
Declared parameter lists are used by Geometric Feature Types, Constraint Feature Types, and Handler Feature 
Types. The textual notation of a declared parameter list is in parentheses after the typeID of the Feature Type 
it belongs to. Each parameter declaration is shown by the Feature Type of the parameter and the name of the 
parameter. If the type is not significant, it is replaced by the keyword ANY. A parameter list can be of variable 
length, which is indicated by an ellipsis after the last parameter (at least one parameter must be declared in a 
parameter list). This is not graphically represented. 

In the graphical notation, parameters are shown as relationships to the Feature 
Types of the parameters, with an association symbol. The name of the parameter is written 
next to the relationship line. Untyped parameters are indicated using the symbol shown on 
the right. 
 

Syntax for the declaration of parameter lists 
decl-param-list = param-decl { ‘,’ param-decl } [ ‘,...’ ] .

param-decl = ( typeID | ‘ANY’ ) param-name .
param-name = identifier .

 

6.2.4 The class GeometricFeatureType 

The class for Geometric Feature Types is included here but not yet detailed. A relationship with some form of 
parametric geometry is predictably necessary. However, how this parametric geometry should be defined has 
not been part of this research project; it is merely represented in the framework by a string indicating the type 
of geometry, e.g. sphere, box. At this point in the project, it is simply assumed that a parametric geometry 
modeller module will become a part of the design support system, and that this module can access the 
Geometric Features and their parameters in the model. The basis for such a module could be found in 
commercially available geometric modelling engines such as Parasolid8 and ACIS9. 
                                                           
8 Parasolid is a trademark of Parametric Technology Corporation (www.ptc.com). 
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Figure 15  Diagram 7 of Schema FeatureTypes: Definition of the support class 
Declared ParameterList. 
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Figure 16  Excerpt from Diagram 3 of Schema FeatureTypes (see figure 8 on page 15): 
Definition of the class GeometricFeatureType. 
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The types of the parameters that the parametric geometry requires, are defined by the attribute 
parameterList of the Geometric Feature Type, which is a list of parameter declarations. The actual passing 
of parameters is done either at the instance level by means of a Geometric Feature Instance, or at the type level 
where a Geometric Feature Type is referenced as a component in a Complex Feature Type, by means of the 
inclusion of a parameter list for that component (see also page 20). 

Notation of the class GeometricFeatureType 
The graphical notation of Geometric Feature Types includes a letter G in the square box on the left of the 
symbol. In the textual notation, the type of geometry is indicated in the body of the definition, using the 
keyword TypeGeometry. The notation of the declared parameter list is already discussed separately. 

Geometric
Feature TypeG

 
Syntax for the definition of Geometric Feature Types 
geometric-type-def = ‘geometry’ typeID ‘(’ [ decl-param-list ] ‘)’

‘{’ geometric-body ‘}’ .
geometric-body = standard-body geometry-type .
geometry-type = ‘TypeGeometry’ ‘{’ identifier ‘}’ .

 
Example of a Geometric Feature Type 

IPEgeometryG

HeightR

length

LengthR

profileheight

geometry IPEgeometry (Height profileheight,
Length length) {
TypeGeometry {IPE}

}

The above example shows the notation of a Geometric Feature Type called IPEgeometry. It 
represents a parametric geometry that is indicated by the name IPE and declares two parameters, one of the 
Feature Type Height, with the name profileheight, another of the Feature Type Length, with the name 
length. This assumes that there exists a parametric geometry with the name IPE that takes two parameters, 
specifying the height and length of the IPE profile, and that has embedded knowledge about the other 
dimensions of the profile, based on the given height parameter. 

A second example shows how Geometric Feature Types can be related to from within a Complex Feature 
Type. 
 

Example of using a Geometric Feature Type as a component in a Complex Feature Type 

IPEgeometryG

length

LengthR

profileheight

IPEbeam

beamlengthbeamheight

beamGeom

HeightR

geometry IPEgeometry
(Height profileheight,
Length length) {
TypeGeometry {IPE}

}

complex IPEBeam {
Spec Height beamheight;
Spec Length beamlength;
Spec IPEgeometry beamGeom
(SELF.beamheight, SELF.beamlength);

}

This example demonstrates how the components beamheight and beamlength of the Complex Feature 
Type IPEbeam serve as parameters to the component beamGeom. Graphically this relation cannot be 
expressed, the diagram only shows the declaration of the parameters of IPEgeometry and its role as a 
component in the IPEbeam type. 

The definition and syntax of passing parameters is described in section 7.2 on page 37. 

6.2.5 The class ConstraintFeatureType 
Constraints form the basis for the relationship of information models with constraint solving and constraint 
checking modules of design support systems. Constraints have been applied in design to model and maintain 
restrictions on the geometry of designed objects. 

                                                                                                                                                                                  
9 ACIS is a trademark of Spatial Technology (www.spatial.com). 
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One approach to applying constraints in geometric modelling situations, is to use temporal interval 
algebra. Allen [1983] defines five relationships between a point and an interval: ahead, front-touch, in, back-
touch, and behind. This approach has been used in [Kelleners et al. 1997; Kelleners 1999] to develop an 
object-oriented constraint solver that handles interval-interval constraints that can be applied on box 
geometries. The solver recognises the following five types of constraints: connection constraints (e.g. touch, 
align sides), distance constraints, a contains constraint, a non-intersection constraint, and unary constraints 
(e.g. fixed position, fixed side, fixed dimension, fixed orientation, minimum dimension, maximum dimension). 
The latter are not interval constraints but necessary for the solving process. 

Dohmen [1998] describes a system that implements constraint-based Feature validation. The system 
handles constraint types such as attach constraints, which allow the attachment of geometric Features to one 
another, and semantic constraints for topologic properties, comparable to the connection and non-intersection 
constraints by Kelleners. Furthermore, Dohmen deals with geometric constraints, specifying e.g. the position, 
or distance, of Features relative to each other. Algebraic constraints relate more general parameters of 
Features, for instance specifying dimensional proportions. Dimension constraints restrict the domain of 
Feature parameters. 

Although the technology of constraint solving as such is not a part of this research project, their 
integration in design support systems is anticipated by the definition of the Constraint Feature Types. In this 
project, a constraint is identified in a Constraint Feature Type by the attribute constraint which is 
represented as a string. The parameters used by the constraint are declared by the list of parameter declarations 
that is represented by the attribute parameterList. In principle, relating the Feature model to constraints in 
this manner is not restricted to constraints on geometric data only, but is open to specifying constraints on any 
other type of data as well. It allows constraints to be applied on any other design aspect, such as structural 
design or construction planning. The sole restriction is that the constraint can be reduced to some form of 
mathematical equation or set of equations for which a solver is available. Two such applications of Constraint 
Feature Types are clear: 

Implementation of ‘derived attributes’ of a Feature, e.g. the calculated outcome of an algebraic equation with 
reference to various locations in the Feature model. An alternative approach for implementing a ‘derived 
attribute’ is by determining its value using an procedure in a Handler Feature Type (see below). 
Automated management of integrity and consistency of the information in a Feature model. Rules for integrity 
management that can be expressed using algebraic equations can be modelled through Constraint Feature 
Types. More complicated procedures require the Handler Feature Types. 

Notation of the class ConstraintFeatureType 
The graphical notation of Constraint Feature Types includes the letters Ct in the square box on the left of the 
symbol. The string representing the constraint is shown in the textual notation using the keyword 
TypeConstraint. The declared parameter list is noted textually and graphically as has been discussed 
before. 

Constraint
Feature TypeCt

 
Syntax for the definition of Constraint Feature Types 
constraint-type-def = ‘constraint’ typeID ‘(’ [ decl-param-list ] ‘)’

‘{’ constraint-body ‘}’ .
constraint-body = standard-body constraint-type .
constraint-type = ‘TypeConstraint’ ‘{’ identifier ‘}’ .
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Figure 17  Excerpt from Diagram 3 of Schema FeatureTypes (see figure 8 on page 15): 
Definition of the class ConstraintFeatureType. 
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Example of a Constraint Feature Type 

Space

space1
space2

Connect
SpacesCt

constraint ConnectSpaces (Space space1,
Space space2) {
TypeConstraint {adjacentTo}

}

 

6.2.6 The class HandlerFeatureType 
Event handling will be an important mechanism in design support systems. Its purpose is to incorporate 
procedural knowledge in both the conceptual model (the Feature Types) and the actual models (the Feature 
Instances). Using event handlers, procedural knowledge can be captured in models concerning, e.g., 
instantiation of types, user-interaction, validation, problem-solving, and model-evolution. 

Handler Feature Types, as presented in figure 18, include a procedure that is executed in response to the 
occurrence of an event. It is beyond the scope of this thesis to specify in which form the procedures are 
implemented and how they are executed by design support systems. However, some of the required functional 
capabilities of these procedures can be deduced from the following issues. Information must be passed to the 
procedure concerning the context in which it is called. For this purpose, a list of parameters is declared for the 
Handler Feature Type (see the attribute parameterList in figure 18 and its definition in figure 15). Besides 
the information passed through this list to the procedure of an event handler, event handlers need to have 
‘knowledge’ about their direct environment, such as the Feature Instance it is attached to (this is the Feature 
Instance that notifies the event handler that the event has occurred). This also includes the relationships of this 
Feature Instance, both typological and instance level relationships (see section 8). To have knowledge about its 
environment, in this case, means that from within the evaluated procedure, data can be accessed that is located 
in the notifying Feature Instance, and data can be retrieved from the relationships of this notifying Feature 
Instance. The procedure should have access also to data that is not directly related to the notifying Feature 
Instance, but that is located elsewhere in the Feature model. This capability provides a way for event handlers 
to manifest themselves as ‘active’ relationships between Feature Instances in a model. It allows, for instance, 
modifications to a Feature Instance to have an effect on other parts of the Feature model. 

Most likely, also knowledge external to the Feature model is relevant for the evaluation of the 
procedure of an event handler. The integration of specific applications with a Feature modelling system, for 
instance a cost calculation module, would require access to external data, such as catalogues, price-lists, and 
other cost related information. 

Although its importance is well acknowledged, the exploration of the possibilities of event handling 
mechanisms in a design support system is not elaborated within the scope of this research project. Some of the 
envisioned applications of event handling include the following. 

Modelling dependencies between parts of a Feature model by means of event handlers. An example is the 
instantiation, modification, or deletion of Features as a result of the occurrence of a particular event. 
Implementation of ‘derived attributes’ of a Feature, e.g. the calculated outcome of an algebraic function with 
input from various locations in the Feature model. An alternative approach for implementing a ‘derived 
attribute’ is by determining its value using an equation in a Constraint Feature Type. Handler Feature Types 
are expected to introduce additional functionality for those cases where a procedural approach for the 
determination of the derived attribute’s value is required. 
Automated management of integrity and consistency of the information in a Feature model. Here, a similar 
consideration can be made: rules for integrity management that can be expressed using algebraic equations can 
be modelled through Constraint Feature Types. More complicated procedures require the Handler Feature 
Types. 
Integration of external information sources in a Feature-based design support system, leading to enhancement 
of the issues mentioned above. For this application of Handler Feature Types, their procedure must be allowed 
to access the external sources. 
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Figure 18 Excerpt from Diagram 3 of Schema FeatureTypes (see figure 8 on page 15): 
Definition of the class HandlerFeatureType. 
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Notation of the class HandlerFeatureType 
The graphical notation of Handler Feature Types includes a letter H in the square box on the left of the 
symbol. 

Handler
Feature TypeH

 
Syntax for the definition of Handler Feature Types 

handler-type-def = ‘handler’ typeID ‘(’ [ decl-param-list ] ‘)’
‘{’ handler-body ‘}’ .

handler-body = standard-body handler-procedure .
handler-procedure = ‘Procedure’ ‘{’ code ‘}’ .

The declared parameter list of the Handler Feature Type is optional and included in parentheses after 
the typeID attribute. The term code is not further specified, because the syntax and semantics of the 
language of procedures have not been defined in this project. In the example below, the code is replaced by 
comments, explaining how the procedure will perform. 
 

Example of a Handler Feature Type 

ModifyAssocH

ANY

associates

handler ModifyAssoc (ANY associates) {
TypeAuthor {"Jos van Leeuwen"}
Procedure {

// modify all instances that are somehow
// associated to the notifying instance
// and that are specified by the
// ‘associates’ parameter.

}
}

 

Scenarios for using Handler Feature Types 
Three different scenarios are foreseen in the framework, in which event handlers are applied in a model. Two 
types of events are distinguished in these scenarios. In the first two scenarios, the event is triggered by a 
Feature Instance, signifying for instance a modification of the instance that should be reacted upon by the 
event handler. This kind of event is called a Feature-event. The third scenario deals with events that are 
triggered by the modelling system itself, for instance events signifying that an evaluation task has been started. 
These events are called System-event. Events are enumerated identifiers that are not further specified in the 
scope of this project. 

Scenarios 1 and 2 for modelling event handlers: handling Feature-events 
In scenarios 1 and 2, an event handler is attached to a Feature Type, which is called the notifying Feature 
Type. This can be any Feature Type, therefore the definition of the abstract base class FeatureType requires 
redefining. In the new definition of the class FeatureType, which is shown in figure 19, a Feature Type can 
have a set of EventHandlers. An EventHandler identifies the event it handles and is identified in the 
context of the notifying Feature Type by the attribute handlername. The difference between the scenarios 1 
and 2 lies in the way parameters are passed to the event handler. 

In scenario 1, the parameters are defined at the level of the notifying Feature Type, meaning that all 
instances use the same parameter definitions. These parameter definitions are provided by means of a single 
Handler Feature Instance that is attached to the notifying Feature Type. In this scenario, the handler 
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Figure 19  Diagram 1 of Schema FeatureTypes: Definition of the abstract base class 
FeatureType. (This diagram supersedes the diagram in figure 6.) 
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attribute of the EventHandler entity in figure 19 contains the FeatureID of a Handler Feature Instance. 
This scenario is useful only when all handling of the event for this Feature Type should, at any time, be passed 
the same parameters. However, it should be noted that a parameter may refer to the role of a component of a 
complex Feature Instance, which provides certain flexibility. In case the parameters differ per instance of the 
notifying Feature Type, scenario 2 must be followed. 

In scenario 2, each instance of the notifying Feature Type has its own definition of parameters and 
therefore its own Handler Feature Instance. At the type level, the TypeID of the Handler Feature Type is 
specified by the handler attribute in the definition of the notifying Feature Type (see figure 19). At the 
instance level, each notifying Feature Instance has a relationship to a Handler Feature Instance that specifies 
the parameters. This relationship is an attribute of the class FeatureInstance which is defined in section 
7.1. 

Scenario 3 for modelling event handlers: handling System-events 
The third scenario deals with System-events that are triggered by the modelling system rather than by 
Features. In this scenario, event handlers are not attached to Feature Instances, but are modelled by 
themselves: the Handler Feature Instances exist independently in the Feature model. The parameters that are 
specified in such a Handler Feature Instance do not depend on a notifying Feature. Examples for the three 
scenarios are given in section 7.2 on page 39. 

Notation of the attribute typeBehaviour of the class FeatureType 
The relationship of an event handler with a notifying Feature Type is defined using the attribute 
typeBehaviour, as shown in figure 19. This attribute includes either the typeID of the Handler Feature 
Type, or the featureID of the Handler Feature Instance, depending on how the parameters are to be passed. 
Furthermore, it includes the role name for the event handler in the context of the notifying Feature Type and 
the identifier for the event that is handled. The inclusion of the typeBehaviour attribute in the definition of 
Feature Types is already anticipated in the textual notation for the attributes of the class FeatureType in 
section 6.1. Its syntax is further defined as follows. 
 

Syntax for the attribute typeBehaviour of the class FeatureType 
typeBehaviour = ‘Behaviour’ ‘{’ { event-decl } ‘}’ .

event-decl = ( typeID | featureID ) roleName
‘[’ eventID ‘]’ ‘;’ .

eventID = identifier .

Examples of how to model the relationships between notifying Feature Types and Instances and Handler 
Feature Types and Instances are given in section 7.2 on page 39, after the definition of the class 
HandlerFeature. 
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Figure 20  Diagram 5 of Schema FeatureTypes: Definition of Domains. 
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6.3 Domains and defaults 
Feature Types, as has been described in the previous sections, may specify domains and defaults for their 
instantiation. The definitions of the various kinds of domains are presented in figure 20 and the different kinds 
of defaults are found in figure 21. 

For Simple Feature Types and Enumeration Feature Types the domain specifies what values are valid 
for the instantiated Features. The default specifies the initial value a Feature will get during instantiation. The 
contents of the SimpleDomain and SimpleDefault for Simple Feature Types depend on the baseType 
(and possibly the unit) of the Feature Type. For example, a Feature Type Area may specify a minimum area 
of 12.5 square meters, with a default value of 17. A SimpleDomain is either a set of character strings, a 
selection of boolean values, or a numeric domain, which is a set of numeric ranges. Some possibilities of 
numeric ranges are included in the diagram: a single numeric value; a discrete range, i.e. a succession of 
numeric values; and a continuous range with an upper and lower bound. Note that in the EXPRESS language, 
of which the graphical counterpart EXPRESS-G is used in the diagrams, a Number data type includes both the 
Integer and Real data types. This means that occurrences of the Number data type can be either integer or real 
values. 

Enumeration Feature Types have an EnumDomain and EnumDefault that select from the enumerated 
identifiers that are defined within the Enumeration Feature Type. 

For Complex Feature Types, the issue of domains and defaults is rather more complicated. A 
ComplexDefault for the Complex Feature Type as a whole specifies an instantiation of the Feature Type 
complete with instantiated components. This Complex Feature Instance must be included in the same Feature 
Type Library section as the Complex Feature Type. When, during a modelling session, such a Complex 
Feature Type is instantiated, the default action will be to create a reference to the Feature Instance included in 
the Feature Type Library. Similarly, a ComplexDomain specifies a set of Feature Instances that are included 
within the same library-section. Instantiating a Complex Feature Type with such a domain is restricted to 
selection of a reference from this set of Feature Instances in the Feature Type Library. 

Notation of Domains 
The syntax for domains varies per class of Feature Type. Five types of domains are defined: string-domains for 
Simple Feature Types with base type string, numeric-domains for Simple Feature Types with base type integer 
or real, a boolean-domain for base type boolean, enum-domains for Enumeration Feature Types, and complex-
domains for Complex Feature Types. 
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Figure 21  Diagram 6 of Schema FeatureTypes: Definition of Defaults. 
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Syntax for domains 
string-domain = string { ‘;’ string } .
numeric-domain = numeric-domain-term { ‘;’ numeric-domain-term } .

numeric-domain-term = discrete-domain | continuous-domain | number .
discrete-domain = number ‘,’ number ‘,..’ [ number ] .

continuous-domain = ( ‘<’ | ‘[’ ) ( ‘<-’ | number ) ‘,’ ( ‘->’ |
number ) ( ‘>’ | ‘]’ ) .

boolean-domain = boolean { ‘;’ boolean } .
enum-domain = identifier { ‘;’ identifier } .

complex-domain = featureID { ‘;’ featureID } .

The term featureID is defined in section 7. Some examples of these domains are given hereafter to 
clarify their meaning further. 
 

Examples of the notation of Domains 
 Examples Meaning 

string: "living"; "cooking" The string value may only be picked from the ones listed. 
numeric:  2; 3; 5,10,..100 Values may be 2 or 3 or in the range 5 to 100 in steps of 5, 

including 5 and 100. 
 <-4,0]; [2,->> Values may be any real number between -4 and zero, but not 

including -4, or greater than or equal to 2. 
boolean:  true The value will always be true. 

enum:  single; double The enumerated value may be one of these identifiers. 
complex:  ht03; ht05; dstA3 Listed are the IDs of the Features that may be selected in the 

context of this domain. 
 

6.4 Feature Type Libraries 
The structure of Feature Type Libraries, as has been briefly indicated already in the beginning of this section, 
is a rather flat, hierarchical structure. Feature Types are categorised into sections in Feature Type Libraries. 
The assumption that such a flat hierarchy should suffice is based on the observation that most classification 
systems in use at present do not provide more levels. However, using this means of categorisation in practice 
will need to confirm this. If necessary, the structure of Feature Type Libraries must be amended to allow for 
nested sections of Feature Types. The initial structure of Feature Type Libraries is presented in figure 22, 
showing a decomposition of a Feature Type Library into sections which in turn contain the Feature Types. 

At various occasions in the above sections, it has become clear that the inclusion of Feature Instances in 
Feature Type Libraries is a necessity. The reasons for this are summarised below. 

defaults and domains for Complex Feature Types 
The defaults and domains for Complex Feature Types are instances that need to be accessible from within the 
Feature Type Library and therefore are included in the library; 
defaults and domains for components of Complex Feature Types 
The same is true for the defaults and domains of the type-components of Complex Feature Types. If type-
components refer to Complex Feature Types, these specify the initial and valid instances of those Complex 
Feature Types within the context of the Complex Feature Type that contains the references. Again the 
instances need to be accessible from within the Feature Type Library; 
instance-components of Complex Feature Types 
Besides type-components, Complex Feature Types can also contain instance-components, which are not 
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Figure 22  Diagram 1 of Schema FeatureLibraries: Definition of FeatureTypeLibrary
(This is a preliminary diagram, for the eventual diagram, see figure 23.) 
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references to Feature Types, but references to Feature Instances. These instances must also be available in the 
Feature Type Libraries. 
Handler Feature Instances specifying the parameters for event handlers attached to any Feature Type 
As discussed during the definition of Handler Feature Types, and referring to scenario 1 of how to use these 
types, a Handler Feature Instance can be used in the definition of any Feature Type to specify the parameters 
for handling events that occur in relation to the Feature Type. The Handler Feature Instance, for this purpose, 
must be available with the definition of the Feature Type, i.e. in the Feature Type Library. 
Feature Instances passed as parameters at the type level 
For the passing of constant values to components of Complex Feature Types at the type level, it is necessary 
that Feature Instances are available at the type level to provide these values. 

This leads to a revised structure of Feature Type Libraries as displayed in figure 23. Besides Feature 
Types, a section within a Feature Type Library now also contains Feature Instances. The class Feature is 
defined in section 7.1. 
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Figure 23  Diagram 1 of Schema FeatureLibraries: Definition of FeatureTypeLibrary
(This diagram supersedes the diagram in figure 22.) 
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7. Classes of Feature Instances 

 
While Feature Types are the formal representation of domain knowledge, defining typological aspects of 
architectural design, Feature Instances are the formal representation of information concerning a particular 
design. What kind of information a Feature Instance contains and in what structure, is defined by a Feature 
Type of which the instance is instantiated. Analogous to the classes of Feature Types presented in section 6, 
this section presents the classes of Feature Instances that define the format for the Feature Instances that can be 
created within the framework. 

7.1 The base class: Feature 
The classes of Feature Instances are based on the abstract class Feature. The class defines that all Feature 
Instances contain the date and author of their instantiation, as well as an optional description. A graphical 
representation of the definition of the base class Feature is found in figure 24. As the name of this class 
indicates, the term Feature Instance is abbreviated to Feature, both terms are used interchangeably in the rest 
of this chapter. 

The Feature Type that a Feature is instantiated from is referred to in the Feature by its typeID. In the 
schema FeatureInstances this is a reference to the schema FeatureTypes. Features are identified by their 
featureID, represented in figure 25. FeatureIDs are to be unique within their context, which is either a 
particular Feature model or a section in a Feature Type Library. A Feature Instance can be included in a 
Feature Type Library, as discussed in section 6.4, for reference in the definition of Feature Types or for 

This section describes in detail the definition of the classes of Feature Instances, which determine the 
kind of information that can be modelled in terms of Feature Instances. 7 
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Figure 24  Diagram 1 of Schema FeatureInstances: Definition of the abstract base class 
Feature. (This is a preliminary diagram, for the eventual diagram, see figure 37 on page 
42.) 
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Figure 25  Diagram 2 of Schema FeatureInstances: Definition of FeatureID. 
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reference from within Feature models. The FeatureID of a Feature Instance that is included in a Feature 
Type Library consists, besides a string, of the sectionID indicating the section in the library that contains it. 

Any Feature Instance may define certain behaviour, which is modelled by means of the behaviour 
attribute (see figure 24). This attribute refers to a list of event handlers, which either have been defined at the 
type level of the Feature, or are added for a particular instance only. The event handler specifies the identifier 
of the Handler Feature that is to handle the event. In the case of an event handler defined at the type level, the 
event to be handled is specified at the type level. For handlers that are added at the instance level, the event 
must be indicated by the event attribute of the handler. Finally, each handler has a role name in the context of 
the Feature Instance. 

Notation of the abstract base class Feature 
The abstract base class Feature does not need a graphical or textual notation, because objects of this class 
cannot be created. Its attributes, however, are inherited by its subclasses and therefore need a textual notation. 
These attributes are, as shown in figure 24, featureID, typeID, created, author, descr, and 
behaviour. The attribute typeID specifies the type of which this Feature is an instance. This attribute is 
defined earlier on page 14. 
 

Syntax for the attributes featureID, created, author, descr, and behaviour of 
the class Feature 

featureID = [ sectionID ‘::’ ] instanceName .
instanceName = identifier .

created = ‘Date’ ‘{’ date ‘}’ .
author = ‘Author’ ‘{’ string ‘}’ .
descr = ‘Descr’ ‘{’ string ‘}’ .

inst-behaviour = ‘Behaviour’ ‘{’ { event-handler } ‘}’ .
event-handler = featureID roleName ‘[’ eventID ‘]’ ‘;’ .

The attribute featureID consists of an identifier that is to be unique within its context, normally a 
Feature model. However, Feature Instances may also be included in Feature Type Libraries, in which case the 
ID also includes the sectionID (i.e. library name and section name) to indicate where they are located. The 
sectionID is followed by two colons and the name of the Feature Instance. 
 

General syntax for the notation of Feature Instances 
feature-inst = simple-inst | enum-inst | complex-inst |

geometric-inst | constraint-inst | handler-inst .
standard-inst-body = created author descr

inst-behaviour inst-relations .

The attribute behaviour refers to the set of event handlers that are associated with the particular 
Feature Instance. An event handler is specified by the event identifier and by the identifier of the Handler 
Feature Instance that is associated with the event. See also the description of Handler Feature Instances in 
section 7.2 on page 39. 

The inst-relations element of the standard body of an instance notation refers to an attribute of 
the class Feature that is not yet presented. It is used to describe relationships that are not defined at the type 
level, but that are added only for the particular Feature Instance. This aspect of instantiation is further 
discussed in section 8 on instance level relationships. 

7.2 Subclasses of the class Feature 
The classes of Feature Instances that can be instantiated are all subclasses of the abstract class Feature, 
inheriting all its characteristics. They are represented in the diagram in figure 26 and discussed separately in 
the remainder of this subsection. 
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7.2.1 The class SimpleFeature 
The class SimpleFeature is the class of Feature Instances that are instantiated from Feature Types that have 
been defined using the class SimpleFeatureType. The instances of this class contain a single, simple value, 
such as integers, reals, and strings. What actual type of data it is that a particular Simple Feature Instance 
contains, is defined by the Simple Feature Type, which is referenced in the typeID10 property defined in the 
super class Feature from which this class inherits (see figure 24). Also the unit of the data, e.g. m2 or W/m2, 
is defined in the corresponding Simple Feature Type, as are the domain for the data and the default value (see 
the definition of the class SimpleFeatureType in figure 8 on page 15). 

                                                           
10 The fact that for Simple Feature Instances the typeID attribute should refer to the typeID of a Simple Feature Type, 

and not of any other Feature Type, is implicitly assumed here. Such restrictions would clearly have to be built in to an 
implementation of the framework, but including them in the schemata presented here would not particularly contribute 
to the clarity of the work. Similar assumptions are made throughout the rest of the discussion of the framework with 
respect to the kind of identifiers that are relevant and valid in particular contexts. 

1

4,1 Parameter

Simple 
Feature Valuevalue

STRING

INTEGER

REAL

BOOLEAN

3,1 (1)

Enumeration 
Feature

Enumerated 
Value

value

Complex 
Feature Componenthas S[0:?]

2,1 FeatureID

role FeatureTypes.
RoleName

featureID L[0:?]

FeatureTypes.
EventIDsystemEvent

Geometric 
Feature

parameter L[0:?]

Constraint
Feature

parameter L[0:?]

Handler
Feature

parameter L[0:?]

 
Figure 26  Diagram 3 of Schema FeatureInstances: Definition of the subclasses of 
Feature. 

Simple 
Feature Value

value

STRING

INTEGER

REAL

BOOLEAN

3,1 (1)

 
Figure 27  Excerpt from Diagram 3 of Schema FeatureInstances (see figure 26 on page 
33): Definition of the class SimpleFeature. 
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Notation of the class SimpleFeature 
The graphical notation of Feature Instances is similar to the notation of Feature Types. 
Feature Instances are represented by rounded, grey boxes with the name of the Feature 
Type, followed by a colon and the name of the Feature Instance; sectionIDs are not 

graphically represented. For Simple Feature Instances, alternatively, the name of the Simple Feature Instance 
can be replaced by the value of the Simple Feature Instance. In the example below, the name of the instance 
room23function is replaced by its value “Pantry”. The graphical notation of Simple Feature Instances 
shows a letter S, I, R, or B in the square on the left of the rounded, grey box to indicate the base type of the 
instance. 

String
FeatureS Integer

FeatureI Real
FeatureR Boolean

FeatureB
 

Syntax for the representation of Simple Feature Instances 
simple-inst = typeID featureID ‘=’ ‘{’ simple-inst-body ‘}’ .

simple-inst-body = standard-inst-body ‘Value’ ‘{’ value ‘}’ .
value = string | number | boolean .

 
Example of a Simple Feature Instance 

SpatialFunction: 
room23functionS

SpatialFunction: 
"Pantry"S

Briefing.Plan.SpatialFunction room23function = {
Date {19980704}
Author {"Jos van Leeuwen"}
Descr {"Function of room 23"}
Value {"Pantry"}

}

What data type constitutes the value of a Simple Feature Instance depends on the baseType attribute 
of the defining Simple Feature Type. This cannot be read from the notation of the Simple Feature Instance. 

For reasons of brevity and clarity, the standard-inst-body part of Feature Instances is omitted in 
the remaining examples in this and the following chapters. Also the sectionID (library name and section 
name) of typeIDs is omitted for the same reason. 

7.2.2 The class EnumerationFeature 
The class EnumerationFeature defines the objects that are instances of Enumeration Feature Types. The 
value of an Enumeration Feature is an identifier, a string, selected from the range defined by the enumeration 
of the particular Enumeration Feature Type (see figure 8 on page 15). Again, the domain and default for this 
value is defined in the corresponding Feature Type. 

Notation of the class EnumerationFeature 
The graphical notation of Enumeration Feature Instances shows a letter E in the square on the left of the 
rounded, grey box. 

Enum
FeatureE

 
Syntax for the representation of Enumeration Feature Instances 

enum-inst = typeID featureID ‘=’ ‘{’ enum-inst-body ‘}’ .
enum-inst-body = standard-inst-body

‘EnumValue’ ‘{’ identifier ‘}’ .

 
Example of an Enumeration Feature Instance 

WallType: 
wallA3typeE

WallType:
'Single'E

WallType WallA3type = {
EnumValue {Single}

}

In the textual notation, the value of the Enumeration Feature Instance is noted by the identifier selected 
from the enumeration defined by the Enumeration Feature Type. As an alternative to showing the name of the 

Enumeration 
Feature

Enumerated 
Value

value STRING3,1 (1)

 
Figure 28  Excerpt from Diagram 3 of Schema FeatureInstances (see figure 26 on page 
33): Definition of the class EnumerationFeature. 

type-name:
instance-name
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enumeration instance, the identifier selected for the value of the instance can be shown in the graphical 
notation, yet enclosed in single quotes as shown in the example. 

7.2.3 The class ComplexFeature 
Objects of the class ComplexFeature are instances of Complex Feature Types. They form structures of 
components that refer to other Feature Instances. The components have a role within the context of the 
Complex Feature. A component may refer to more than one Feature Instance, in which case those instances 
share the same role in their relationship to the Complex Feature Instance. The relationship of a component to a 
Complex Feature Instance is defined at the conceptual level, i.e. in the definition of the corresponding 
Complex Feature Type. Therefore, the role name of the component corresponds to the role name that was 
specified in the Complex Feature Type and the number of instances that can share the same role is specified by 
the cardinality of the component in the type’s definition (see figure 12 on page 19). 

The component structures of Complex Feature Types are used to model three kinds of relationships: 
decompositions, associations, and specifications. Inheritance relationships, or specialisations, are modelled 
using the super-subtype structure of Complex Feature Types. The supertype of any Complex Feature Type is 
always again a Complex Feature Type. As a result, a Complex Feature Instance inherits the relationships 
defined by its type’s supertype. Therefore, the component structure of a Complex Feature Instance also 
includes the components defined in the Complex Feature Types that are found above its type in the hierarchy 
of specialised Complex Feature Types, see figure 30. 

Notation of the class ComplexFeature 
The graphical notation of Complex Feature Instances shows a rounded, grey box without additional symbols, 
containing the name of the Feature Type and the name of the instance. The relationships to its components, i.e. 
to other Feature Instances, are shown in both the textual and graphical notation using the role name and, if the 
cardinality is other than 1, the index of the related Feature Instance within the particular component. 
Components that are not instantiated are not shown in either notation. 

Complex
Feature

 
Syntax for the representation of Complex Feature Instances 

complex-inst = typeID featureID ‘=’ ‘{’ complex-inst-body ‘}’ .
complex-inst-body = standard-inst-body { component-item } .

component-item = roleName [ ‘[’ integer ‘]’ ] ‘=’ featureID ‘;’ .

 

Complex 
Feature Componenthas S[0:?]

2,1 FeatureID

role FeatureTypes.
RoleName

featureID L[0:?]

3,1 (1)

 
Figure 29  Excerpt from Diagram 3 of Schema FeatureInstances (see figure 26 on page 
33): Definition of the class ComplexFeature. 

Complex
Type A

Complex
Type B

Complex
TypeC

 

Figure 30  Specialisation hierarchy of Complex 
Feature Types. Analogous to other OO approaches, 
Type B inherits all the components defined by Type A, 
while Type C inherits all components defined by B and 
A. 
Instances of Type C will contain components of all 
three types. 



36 Design Systems Reports 1999 / 2 13 

  

Example of a Complex Feature Instance 

Room: Office1

Area: Area1R

Wall: WallB

WallElement: 
ElementB1

usableFloorArea

enclosedBy[1]

element[1]

Wall: WallC

WallElement: 
ElementC1

element[1]

WallElement: 
ElementB2

element[2]
enclosedBy[2]

Area Area1 = {
Value {29.7}

}

Room Office1 = {
enclosedBy[1] = WallB;
enclosedBy[2] = WallC;
usableFloorArea = Area1;

}

Wall WallB = {
element[1] = ElementB1;
element[2] = ElementB2;

}

NB. The textual notation of the above example is not shown completely. 

The graphical representation of another example is shown in figure 31. This example demonstrates the effect 
of defining components of Features as references. Components of a Complex Feature Instance are not 
contained in the instance, but are relations, references, to other Feature Instances. This allows Feature 
Instances to share components. In the example, the ‘function’ component of both rooms 21 and 22 refer to the 
same Feature of the type Function that has the value ‘Office’. 

The support class Parameter 
The last three subclasses of Feature Instances use parameters to pass information from the Feature model to 
either parametric geometry, constraints, or event handlers. These subclasses are the classes of Geometric, 
Constraint, and Handler Feature Instances. They are defined next in this section. Parameters can be passed in 
four forms: 

1. identifiers of Feature Instances; 
2. components of Complex Feature Instances; 
3. instance level related Feature Instances; 
4. references to Feature Instances. 

These four forms determine the definition of the support class Parameter which is shown in figure 
32. Because parameters are passed in ordered lists, their position in the list must correspond to that of their 
declaration in the declared parameter list of the Feature Type (see figure 15 on page 22). 

In the first form, where identifiers of Feature Instances are passed as parameters, the attribute 
featureID of a parameter simply contains the FeatureID of that Feature Instance. This provides access to 
the information available in the Feature Instance, such as the value of a Simple Feature Instance. 

Space:Room21

Space:Room22

Space:Room23

Function:
"Office"S

Function:
"Meeting Room"S

function

function

function

Temperature:
19R

dayTemp

dayTemp

dayTemp

 
Figure 31  Shared Features made possible through the reference 
structure of the components of Complex Features. 

4,1 (3) Parameter 2,1 FeatureID

Parameter 
Role

FeatureTypes.
RoleNameINTEGER

component

featureID

rolenameindex

SELF;
NOTIFIERreference

Feature
Reference

 
Figure 32  Diagram 4 of Schema FeatureInstances: Definition of the support class 
Parameter. 
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If the Feature Instance is a Complex Feature Instance, the component attribute of the parameter may 
refer to one of the components of that Complex Feature Instance by specifying the role name of the 
component; this is the second form of parameter passing. If the component refers to multiple Feature 
Instances, which depends on the cardinality of the component as defined in the Complex Feature Type, an 
index is required to indicate the exact Feature Instance that is to be passed as parameter. If that index is not 
specified, this means that, by way of the role name, all Feature Instances referred by the component are passed 
as the parameter. 

Because relationships between Features can also be defined at the instance level, as discussed in section 
8, in the third form of parameter passing, the role name refers to such an instance level relationship. Again this 
is done by specifying the role name of the relationship. Any Feature Instance, not just Complex Feature 
Instances, can have such instance level relationships. 

The last form of parameter passing involves references to Feature Instances in the context of the 
parameters. For all three kinds of Feature Instances that use parameters, a parameter may refer to that Feature 
Instance itself by specifying the value SELF for the attribute reference. This attribute replaces the 
featureID attribute; they are mutually exclusive. For Handler Features, a parameter may refer to the notifier 
of the event handler by using the value NOTIFIER for the attribute reference. 

The usage of the reference attribute is demonstrated after the definition of Handler Features. In the 
schema in figure 32, the attributes featureID and reference are shown as optional attributes, while in fact 
they are mutually exclusive. 

Notation of parameter lists 
Lists of parameters are textually noted as comma-delimited lists. Each parameter consists of the featureID 
of the Feature Instance that is to be passed as the parameter, or one of the keywords SELF and NOTIFIER as 
appropriate. 

In case a parameter should refer to a component of a Complex Feature Instance or to an instance level 
relationship, the role name, preceded by a period, and the optional index in square brackets follow the 
identifier of the Feature Instance. This is done in both the textual and graphical notation. 
 

Syntax for the notation of parameter lists 
param-list = parameter { ‘,’ parameter } .
parameter = ( featureID | ‘SELF’ | ‘NOTIFIER’ )

[ component-param ] .
component-param = { ‘.’ roleName [ ‘[’ integer ‘]’ ] } .

In graphical notations, a parameter is shown as an association relationship from the Feature Instance 
that uses it to the Feature Instance that is passed as parameter. The name of the parameter is shown next to the 
relationship line. If the parameter list is declared as a variable length list, then the parameters that have the 
same name are shown using an index in square brackets behind the parameter name, for example 
oneOrMoreDoors[3] indicates the third parameter to be passed with that name. 

The references SELF and NOTIFIER are shown using Complex Feature symbols, regardless of the 
actual type of Feature. They are not resolved, i.e. not replaced by the referred Feature Instances. The symbol of 
the Feature Instance passed as parameter, if this is a Simple Feature Instance, may show the value of the 
simple data rather than its identifier. 

Examples are given after the definition of the classes of Feature Instances that use parameters, next in this 
section. 

7.2.4 The class GeometricFeature 
Instances of a Geometric Feature Type merely consist of relationships to the Feature Instances that act as 
parameters for the parametric geometry defined in the Geometric Feature Type. The parameters form an 
ordered list that corresponds to the ordered list of parameter declarations in the Geometric Feature Type. In the 
framework, it is assumed that any explicit representation of the geometry is generated from the data available 
in the Feature model and has a repository that is, both transient and persistent if desired, external to the Feature 
model. The relationships between the external geometric model and the Geometric Feature Instances in the 
Feature model are to be maintained by the geometric model. 

Geometric 
Feature

parameter L[0:?]
3,1 (1) 4,1 Parameter

 
Figure 33  Excerpt from Diagram 3 of Schema FeatureInstances (see figure 26 on page 
33): Definition of the class GeometricFeature. 
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Notation of the class GeometricFeature 
In the graphical notation, the relationships of the Geometric Feature Instance with its parameters are shown 
using the association relationship symbol accompanied by the name of the parameter. In the textual notation, 
the parameter list is enclosed in parentheses and follows the identifier of the Geometric Feature Instance. The 
keyword SELF may be used to make a parameter refer to the Geometric Feature itself. 

Geometric
FeatureG

 
Syntax for the representation of Geometric Feature Instances 

geometric-inst = typeID featureID ‘(’ [ param-list ] ‘)’ ‘=’
‘{’ geometric-inst-body ‘}’ .

geometric-inst-body = standard-inst-body .

 
Example of a Geometric Feature Instance 

IPEgeometry:
IPE240G

Height: 240R

length

Length: 5794R

profileheight

used type definition: 
geometry IPEgeometry (Height

profileheight, Length length) {
TypeGeometry {IPE}

} 
 
IPEgeometry IPE240

(Height240, BeamLengthBC) = {
}

 

7.2.5 The class ConstraintFeature 
While Constraint Feature Types define constraints and their required types of parameters, Constraint Feature 
Instances only need to specify which Feature Instances actually provide the values for these parameters. The 
identifiers of these Feature Instances are inserted in the ordered list of parameters, which corresponds to the 
ordered list of parameter declarations defined by the Constraint Feature Type. As with the parameters of 
Geometric Feature Instances, the parameters may actually be referring to components of Complex Feature 
Instances, in which case the role name and possibly an index are required. 

Notation of the class ConstraintFeature 
Similar to the Geometric Feature Instances, the relationships to the parameters of Constraint Feature Instances 
are shown with association relationship symbols in the graphical notation. The textual notation shows the 
parameter list in parentheses after the featureID of the Constraint Feature Instance. The keyword SELF may 
be used to make a parameter refer to the Constraint Feature itself. 

Constraint
FeatureCt

 
Syntax for the representation of Constraint Feature Instances 

constraint-inst = typeID featureID ‘(’ [ param-list ] ‘)’ ‘=’
‘{’ constraint-inst-body ‘}’ .

constraint-inst-body = standard-inst-body .

 
Example of a Constraint Feature Instance 

ConnectSpaces: 
KitchenToDiningCt

Space: Kitchen Space: 
Diningroom

space2space1

used type definition: 
constraint ConnectSpaces (Space space1,

Space space2) {
TypeConstraint {adjacentTo}

}

ConnectSpaces KitchenToDining
(Kitchen, Diningroom) = {

}

 

Constraint
Feature

parameter L[0:?]
3,1 (1) 4,1 Parameter

 
Figure 34  Excerpt from Diagram 3 of Schema FeatureInstances (see figure 26 on page 
33): Definition of the class ConstraintFeature. 
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7.2.6 The class HandlerFeature 
A Handler Feature Instance provides the parameters that are to be passed to the procedure defined by the 
Handler Feature Type that it is an instance of. The parameters are provided in a list, similar to those of 
Constraint and Geometric Feature Instances. 

Handler Features can be attached to a Feature Type or a Feature Instance, to handle so-called Feature-
events. When such a Feature-event is triggered, the system is notified that the procedure defined by the 
Handler Feature Type should be called, passing it the parameters specified in the Handler Feature Instance. 
Handler Features can also be modelled to handle so-called System-events, in which case they are not attached 
to a notifying Feature Type or Feature Instance. The identifier of the System-event must be specified for this 
kind of Handler Feature Instance (see the definition in figure 19 on page 26). 

Notation of the class HandlerFeature 
In order to define the notation of Handler Feature Instances, the three scenarios described after the definition 
of the class HandlerFeatureType are followed (see page 26). 

Handler
FeatureH

 
Syntax for the representation of Handler Feature Instances 

handler-inst = typeID featureID [ ‘[’ eventID ‘]’ ]
‘(’ [ param-list ] ‘)’ ‘=’
‘{’ handler-inst-body ‘}’ .

handler-inst-body = standard-inst-body .

In the first scenario, a Handler Feature is attached to a Feature Type, specifying the parameters for all 
event handling that should occur for the instances of that Feature Type. In this scenario, the handler should 
have access to the notifying Feature Instance and to its directly related Feature Instances. Because the Handler 
Feature is attached at the type level, the identifier of the notifying Feature is not yet known. Therefore the 
keyword NOTIFIER is introduced in the definition of parameter lists for handlers, which may substitute the 
featureID in both the graphical and textual notation of parameters. Note that the keyword SELF may be 
used to refer to the Handler Feature itself in order to access its instance level relationships. The eventID in 
this scenario is not relevant, because the event to be handled is specified by the notifying Feature Type. 
 

Example of a Handler Feature Instance, attached to a Feature Type (scenario 1) 

Wall

Door

door [0..?]

modifyDoors
[onModified]

ModifyAssoc:
doorModifierH

ModifyAssoc doorModifier
(NOTIFIER.door) {

}

complex Wall {
Behaviour { doorModifier

modifyDoors [onModified];
}
Assoc Door door[0..?];

}

In the second scenario, a Handler Feature is attached to a Feature Instance, specifying the parameters 
for the event handling of that instance only. Although the featureID of the notifying Feature is now known, 
the same keyword NOTIFIER may be used to refer to that Feature. 
 

Handler
Feature

parameter L[0:?]

systemEvent
FeatureTypes.

EventID
3,1 (1)

4,1 Parameter

 
Figure 35  Excerpt from Diagram 3 of Schema FeatureInstances (see figure 26 on page 
33): Definition of the class HandlerFeature. 
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Example of a Handler Feature Instance, attached to a Feature Instance (scenario 2) 

Wall:
wallB

Door:
doorB1

Door:
doorB2

door[1]

door[2]modifyDoors
[onModified]

ModifyAssoc:
doorModifierH

Wall wallB {
door[1] = doorB1;
door[2] = doorB2;
Behaviour { doorModifier

modifyDoors[onModified];
}

}

The third scenario describes the handling of so-called System-events. This is done by Handler Features 
that are not attached to a Feature Instance or Feature Type. 
 

Example of a Handler Feature Instance for handling of a System-event (scenario 3) 

CostEvaluator:
evaluateCosts 1H

BuildingBlock:
blockC

blockToEvaluate[2]

BuildingBlock:
blockD

blockToEvaluate[1]

used type definition: 
handler CostEvaluator

(BuildingBlock blockToEvaluate, ...) {
Procedure {

// evaluate the costs related
// to the buildingblock passed
// as the ‘blockToEvaluate’
// parameter(s).

}
}

CostEvaluator evaluateCosts_1
[onStartEvaluate] (blockC, blockD) = {

}

In the above example, the parameter blockToEvaluate of the handler is specified by directly 
assigning the identifiers of the blockC and blockD instances. An alternative approach, which effectively 
does the same thing, is to use instance level relationships to relate both BuildingBlock instances to the 
Handler Feature. For the parameter, the role name of this relationship (block) can now be used, together with 
the keyword SELF to refer to the Handler Feature itself. This example illustrates the usage of instance level 
relationships, which are discussed in the section 8. 
 

Example of a Handler Feature Instance for handling of a System-event (scenario 3) 

CostEvaluator:
evaluateCosts 2H

BuildingBlock:
blockC

block[2]

SELF.block
blockToEvaluate

BuildingBlock:
blockD

block[1]

CostEvaluator evaluateCosts_2
[onStartEvaluate] (SELF.block) = {
Assoc block[1] = blockC;
Assoc block[2] = blockD;

}

 

7.3 Feature Models 
Features are organised into Feature models. The organisation of a Feature model, as shown in figure 36, is 
defined as a simple collection of Features. Feature models are identified by the ModelName attribute. A 
consequence of this simple organisation of Features is that any subdivision of the model into, for instance, 
hierarchical levels of info, must be devised in another manner. The advantage of this approach, which is very 
much related to the objectives of Feature modelling that are being aimed at in this project, is of course that any 
subdivision can be made accordingly to the designer's intent. 

Feature
Model

has S[0:?]

FeatureInstances.
Feature

ModelName

STRING

modelName

 
Figure 36  Diagram 1 of Schema FeatureModels: Definition of FeatureModel. 
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For such a subdivision, special Feature Types must be instantiated to model the backbone of the 
structure to which all Features in the model are to be attached. For example, if a subdivision of the model is 
requested into the levels of ‘building’, ‘storeys’, ‘spaces’, ‘building elements’, ‘components’, etc., Feature 
Instances with interrelationships will be modelled to represent these levels. Subsequently, all Features 
describing information at the level of storeys will be modelled with a relationship to the ‘storeys’ Feature. 
These relationships are preferably modelled at the instance level only in order to keep the Feature Types more 
generically applicable (see the next subsection). If the different storeys in a building are to be distinguished, 
multiple ‘storey’ instances must be modelled. 

The Feature Types that are to be used to build up a hierarchy of levels in a Feature model can, as 
mentioned before, be defined to the needs of the designer. However, it is likely that the definition of Generic 
Feature Types, i.e. a standard set of hierarchical systems, would be beneficial, especially for the purpose of 
communication of models. The basis for the definition of these hierarchies could be found in those used in 
current modelling techniques, such as product modelling, and in more traditional approaches for 
documentation, such as specification writing and budgeting. 

8. Instance level relationships 

 
If a relationship is desired between Feature instances that is not defined at the typological level, a problem 
arises because the relationship cannot be instantiated. The following example will be used to discuss the 
options for solving this problem: A designer wants to model the relationship between doors and an escape 
route through the building. This implies that certain doors require adequate fire resistance. In the conceptual 
model used by this particular designer, it happens that fire resistance is not defined as part of the Feature Type 
Door. 

Three different actions that can be taken to solve this problem are discussed below: 

1. modifying the type definition; 
2. creating a new type or sub-type; 
3. modelling the relationship for the particular instance only. 

 
All three of these options need to be provided by design 

information systems based on the Feature modelling framework. 
The first option is to change the definition at the 

typological level, adding the desired relationship to the 
Feature Type. This solution is acceptable if all instances of 
the particular type require this relationship. Making the 
relationship optional increases the chances that this is a 
satisfactory situation, however, in many cases the desired 
relationship bears no relevance to other instances of the 
same type: for many doors fire resistance may not be 
significant. Adding to the definition of a Feature Type, its 

size and complexity continue to increase and eventually it will loose its relevance, which is: being the common 
denominator of its instances. 

A second option is to define a new Feature Type, 
either as an amended copy of the original Feature Type, 
or as a Feature sub-type that inherits the super-type’s 
characteristics while adding the desired relationship: a 
Fire_Door-type is defined. This approach avoids the 
problem of growing Feature Types. However, the 
definition of a new Feature Type for each divergent 
instance may result in an unmanageable number of 
Feature Types (security doors, automatic doors, etc). 

Furthermore, an instance can only be derived from one type: these door-types are exclusive so that fire doors 
cannot be attached to the security system. Apart from this, it may not be the designer’s notion of the situation 
that ‘adding a relationship to a particular entity’ is regarded as the creation of a new concept. 

For the purpose of flexibility, instance level relationships allow a designer to model relationships 
between Features that are not defined at the typological level. 8 

Door

ColourHinge

colourhinge S[0..?]

Escape Route

Fire ResistanceDoor

ColourHinge

colourhinge S[0..?]

passes through

fire res.

Fire DoorDoor

ColourHinge Fire Resist.

Escape Route

colourhinge S[0..?]

passes through

fire res.
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The actual situation in the third option may 
well be described as a designer adding a non-
typical relationship to a Feature instance (the fire 
resistance concerns only this door), without 
regarding this as a change in concept of the original 
Feature Type. This situation should be modelled 
exactly in this manner, for the information model 
to represent most accurately the rationale of this 
design decision. 

What is required thus, is a sort of incidental 
relationship that can be modelled between Feature instances without the necessity of including the relationship 
in the definition of the Feature Type. For this purpose we distinguish a type-relationship from an instance-
relationship. Type-relationships are defined at typological level and have possible relevance to all instances of 
a type, whereas instance-relationships are added at instance level without being defined at typological level, 
thus without relevance to other instances of the same type. In the diagram, the roles of instance-relationships 
are shown in italics. 
 
Three of the four categories of relationships described in section 4, are relevant also for the kind of 
relationship that can be expected at instance level. Table 3 lists the seven types of relationships that are part of 
the FBM infrastructure. The three types of instance-relationships are semantically equivalent to their 
counterparts at the typological level. 

Table 3  Relationships at two levels. 
 type-relationship instance-relationship 

specialisation is_a - 
decomposition has_a instance_has_a 

association association instance_association 
specification specification instance_specification 

One of the most important implications of instance-relationships for information modelling systems 
concerns the way information is searched for and addressed in the information model. Instead of using 
knowledge from the structure of the conceptual model (the typological level), the system must now search for 
relationships at instance level as well in order to find the requested information in a model. For instance, 
information concerning costs may be available in the model by means of relationships defined for the different 
types of elements in a building, but in addition, certain costs may be added, as a specification, to particular 
instances of building elements that bring additional costs to the construction process: ‘all steel columns of the 
type HE230A cost $x.xx per meter, but the one labelled D23 costs an additional $z.zz because it is harder to 
position.’ 

8.1 Implications for the framework 
The purpose of instance level relationships is to allow unforeseen relationships or non-typical relationships to 

Feature
(abs)

FeatureTypes.
TypeID

typeID

2,1 FeatureID

Date

Author

Description

created

author

descr

featureID

FeatureTypes.
EventID

3,1 
[specialisation]

EventHandler

handlerFeatureID

behaviour S[0:?] REAL

STRING

FeatureTypes.
RoleName

event

handler
RoleName

Instance
Relation

role

instRelation S[0:?]featureID
L[0:?]

 
Figure 37  Diagram 1 of Schema FeatureInstances: Definition of the abstract base class 
Feature. (This diagram supersedes the diagram in figure 24.) 
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be added to Feature Instances. These relationships cannot be restricted by the definition of the Feature Type of 
the instance in question and must be allowed for all kinds of Feature Instances, not just Complex Feature 
Instances. This implies that instance level relationships need to be included in the definition of the base class 
Feature. The revised definition of the class Feature is represented in the diagram in figure 37. The revised 
Feature class defines the possibility of adding relationships between Feature Instances and giving these 
relationships a role. This structure is similar to the component structure defined in Complex Feature Types. 
The InstanceRelation entity in the diagram specifies the role of the instance level relationship, and has a 
list of Feature identifiers that refer to the related Feature Instances. This allows an instance level relationship to 
exist with multiple Feature Instances, using the same role name, similar to the way this is possible with 
components in a Complex Feature Type. Although the type of the instance level relationship is not pre-
defined, the modelling system should ensure that the Feature Instances that participate in one such relationship 
should be of the same type. 

Notation of instance level relationships 
In the textual notation, instance level relationships are noted in a similar way as the definition of relationships 
at the type level. The same three keywords are used for the definition of the three kinds of relationships, Spec, 
Has, and Assoc. The relationship is further defined by the featureID of the related Feature Instance, the 
role name of the relationship, and an optional integer in square brackets, which indicates the index of the 
related Feature for the specified role name. Because there is no definition of this relationship at the conceptual 
level, there also is no definition of its cardinality, domain, or default. In fact, this means that the cardinality of 
instance level relationships is always [0..?]. If an instance level relationship needs to be added using the 
same role name as another instance level relationship, both will need to be given the additional integer to 
distinguish between them. In both the textual and graphical notation, instance level relationships are shown 
with the role name in italics. 
 

Syntax for the attribute instRelation of the class Feature 
inst-relations = { inst-spec-decl | inst-decomp-decl |

inst-assoc-decl } .
inst-spec-decl = ‘Spec’ inst-relation-decl .

inst-decomp-decl = ‘Has’ inst-relation-decl .
inst-assoc-decl = ‘Assoc’ inst-relation-decl .

inst-relation-decl = roleName [ ‘[’ integer ‘]’ ] ‘=’ featureID ‘;’ .
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