
1 CREATIVITY AND DESIGN SUPPORT 

1.1  Dynamic nature of Design 
Architectural design problems are generally ill-
defined, or ‘wicked’ as Cross (1984) characterises 
them. They require a very dynamic behaviour from 
designers, not only in searching for design solutions, 
but also in searching for the design problem (Coyne 
at al. 1991). Tasks such as analysis, synthesis, and 
evaluation do not occur in neat cycles, but designers 
tend to switch in a rather ad hoc manner between the 
different stages and tasks in design and often per-
form these tasks concurrently (Lawson 1990). 

Obviously, during such a dynamic design process 
information is not treated as static data. Content and 
structure of design information is continually subject 
to change, which places a significant requirement on 
the development of computer support for design 
tasks. Formal information models for design must be 
as flexible and dynamic as the design process itself. 
They must evolve, as design evolves. The evolution 
of design information models has been subject of re-
search by Eastman et al. (1995) and at the Design 
Systems group at Eindhoven University of Technol-
ogy (van Leeuwen et al. 1995, 1997, 1998, 1999, 
van Leeuwen 1999). Similar issues are addressed 
also in the work by Ekholm & Fridqvist (1997, 
1999) and Hendricx (2000). 

Considerations on the dynamic nature of design 
lead to the following conclusions: 
 
1 Design is a process of problem-solving and often 

concerns problems that are initially not well-
structured. 

2 Information related to design problems and solu-
tions is dealt with in different ways depending on 

the approach of solving the design problem. De-
sign involves creativity through combinations of 
these approaches: 
a. Selection of an existing solution for a similar 

design problem. This involves matching in-
formation related to the problem and the exist-
ing solutions. 

b. Creating a new solution for the design prob-
lem, involving the generation of new informa-
tion that defines the solution. 

c. Combining existing pieces of information in 
order to find new relations or structures in 
concepts and ideas that lead to design solu-
tions. This involves analysis, re-interpretation, 
and re-structuring of existing design informa-
tion. 

d. Altering the design-problem in order to find a 
suitable solution. This means analysis, re-
interpretation, and re-structuring of the infor-
mation related to the problem, possibly even 
adding to, or dropping parts of the design 
problem. 

3 Activities in design do not take place in a predict-
able order, the information dealt with in design 
activities cannot be foreseen: the content and 
structure of required information or generated in-
formation cannot be presupposed. 

4 Individual designers, as well as the sector of de-
sign in the Building & Construction industry as a 
whole, are under constant development, with new 
knowledge, concepts, techniques, methods, prod-
ucts, materials, and styles emerging. Conceptual 
information models must evolve along with this 
development, in order to accurately represent the 
changing domain of design in B&C. 

 

 
 
Paper published in the proceedings of the Third European Conference on Process and Product Modelling, 
Lisbon, Portugal: September 2000. 

 
Modelling with Features and the formalisation of early design knowledge

J.P. van Leeuwen & B. de Vries 
Design Systems group, Faculty of Architecture, Building, and Planning, 
Eindhoven University of Technology, The Netherlands 
www.ds.arch.tue.nl 

 
ABSTRACT: Creativity in architectural design requires a type of computer support that provides flexible 
structures in information models. Such models must follow the dynamic way that designers handle informa-
tion, in particular during early stages of design. A framework is discussed that allows designers to define the 
formalisation of their own design concepts into so-called types of Features. The definition of these Feature 
Types can be done in a number of manners; three scenarios for this procedure are presented and discussed. 



The above conclusions lead to the statement of 
new requirements for information models that are to 
support the dynamic nature of design. These re-
quirements are denoted by the terms extensibility 
and flexibility, both ensuring the possibility for an 
information model to evolve along with the devel-
opment of a design. 

1.2  Modelling with Features 
The technology of Feature-Based Modelling (FBM) 
has been developed initially in the area of mechani-
cal engineering (Shah & Mäntylä 1995). As in the 
approach of Product Modelling (PM), FBM has 
started from the objective of generating semantically 
rich models of engineering data. Yet, the approach 
followed in FBM is different. PM approaches have 
developed conceptual models that represent the data 
structures to be used by their applications. These 
conceptual models largely aim at the later stages of 
design of the product, and are used to communicate 
the as-designed information between the various 
participants. Historically, the starting-point in FBM 
has been formed by geometry models, from which it 
was attempted to recognise the semantics of design. 
These semantics were then modelled using so-called 
Features. However, because much of the design in-
formation available during design cannot be recog-
nised from geometric models, the design-by-
Features approach was developed, where the seman-
tically rich Features formed the primitives in build-
ing up the geometry. Combinations of both design-
by-Features and Feature recognition joined the ad-
vantages of both approaches (DeMartino et al. 1994, 
Ovtcharova & Vieira 1995). 

The result of this historical development from 
Feature recognition to design-by-Features, and even-
tually to the combination of both, has been that 
models consisting of Features are not, as in most PM 
approaches, predefined in large data structures. Fea-
tures are defined as relatively autonomous entities of 
information that are given a position and relation-
ships in the model only at design-time, not at the 
time of development of conceptual models. Also, the 
collection of Features available to designers is not 
assumed to be complete: designers can define and 
add their own Feature types to their collection of de-
sign tools. These characteristics of Feature-Based 
Modelling are very appealing to the dynamic archi-
tectural designer who is struggling with ill-defined 
design problems at the early stages of design. 

Research on a Feature-Based Modelling approach 
for architectural design has led to the development 
and prototypical implementations of a theoretical 
framework with the following characteristics (van 
Leeuwen & Wagter 1997, van Leeuwen 1999): 
 
1 Features are used to represent the semantics of a 

building design. 

2 Features are the formal definition of characteris-
tics or concepts of design. 

3 Features are applied to multiple levels of abstrac-
tion of modelling the design (as opposed to the 
original FBM area, where Features are used only 
to describe the level of parts). 

4 Features can be Generic Features, shared by the 
domain of architectural design, or Specific Fea-
tures, which are defined for a particular view, e.g. 
a particular design style. 

5 Designers can define Types of Features as the 
need to formalise a design concept arises. 

6 Features form interrelated structures in a Feature 
model, using the relationships that are defined at 
the level of Feature Types, or by adding occa-
sional relationships at the instance level. 

7 Libraries of Feature Types represent bodies of 
domain knowledge. These libraries can also in-
clude instantiated data, mixed with the typologi-
cal definitions. 

 
Of these characteristics of the Features frame-

work, issue number 5 (Designers can define Types 
of Features as the need to formalise a design concept 
arises) is discussed in detail in the remainder of this 
paper. 

2 STRATEGIES FOR DEFINING FEATURE 
TYPES 

2.1 Concept identification 
Defining a Feature Type follows the decision to 
formalise a design concept. Therefore the first prob-
lem to address in Feature Type definition is: how to 
recognise and identify a concept? Two different 
points of view from which to approach this problem 
are discussed. The first point of view discusses how 
concepts can be acquired from sources of design 
knowledge. The second point of view presents the 
most common approaches in OO Analysis to classify 
a given knowledge domain. Both points of view 
must be considered in the processes of identifying 
concepts for the formalisation of design knowledge. 

2.1.1 Design domain knowledge and vocabulary 
The first point of view in the quest for concepts is 
taken from the body of knowledge in the domain of 
design. This knowledge, particularly in the complex 
discipline of architectural design, is not always read-
ily available or easily accessible. Certain concepts in 
this body of knowledge are scientifically defined, 
such as the SI units (meter, second, Kelvin, Volt, 
etc.). These often are rather elementary concepts, 
which is to say that, in terms of information struc-
ture, they do not bare much complexity. Other, per-
haps more complex, concepts may be defined in a 
less exact manner, but still be well conceived, such 
as industrial products of which all characteristics are 



known and available from manufacturers. The ter-
minology, used for these products and their charac-
teristics, forms the basis for defining the Feature 
Types that are to represent this kind of concept. A 
third kind of concept is perhaps the most important 
in design, especially in early stages. These concepts 
form the core of architectural design theory and 
methods. They represent elements of design that can 
be either concrete or abstract; tangible or intangible; 
exact or indeterminate. For this kind of concept, the 
vocabulary of the design domain may be a suitable 
starting-point for their formal definition into Feature 
Types. This vocabulary, in architecture, is not for-
mally defined either, but many terms have tradi-
tional meanings that are generally accepted. 

The first consideration in the process of identify-
ing a concept should therefore be whether a term ex-
ists that covers the potential concept. Terms are 
normally used to indicate the names of, e.g., sys-
tems, structures, products, materials, functions, or-
ganisational units, et cetera. An analysis of the way 
the term is used should be projected onto the concept 
being identified and reveal if the term actually repre-
sents that concept or not. If an existing, accepted 
term cannot be found, there are four possible conse-
quences: 
– The potential concept needs some adjustment to 

fit a term that is reasonably close to describing 
the concept. 

– The potential concept covers a combination of 
multiple terms. 

– The potential concept introduces a new term in 
the design vocabulary. 

– Any combination of the three options above. 
 

Whether or not new terminology should be de-
fined involves a trade-off between aspects such as: 
– Acceptability of the concept in the design disci-

pline 
This may be an important issue when the concept 
serves, e.g., purposes of standardisation, regula-
tion, or information exchange. 

– Desired or allowed level of ambiguity of the de-
fined concept 
Because new terminology, as opposed to tradi-
tional terminology, is not naturally known, its in-
troduction may result in various interpretations of 
the term, which have to be verified against the 
concept’s definition. Any ambiguity in the formal 
definition of the concept will then allow variance 
in the interpretation of the term. 

– Completeness and exactness of the definition 
As a result of the previous aspect, the complete-
ness and exactness of the definition of the con-
cept cannot be based on knowledge that is inher-
ently related to traditionally known terminology. 

– Uniqueness of the concept in relation to existing 
vocabulary 
Using new terminology allows a concept to be 

defined distinctly and independently from im-
plicit meanings related to existing terminology. 
This can be a prerequisite when the uniqueness of 
the concept is to be stressed or when distinction 
from other concepts is necessary. 

 
Closely related to design domain knowledge are 

the areas of design methodology and design theory. 
Design methodology, according to Roozenburg & 
Eekels (1995), is the science that studies the struc-
ture, methods, and rules of design. Design method-
ologies are either developed while focusing on the 
design process as a whole, or intended for specific 
domains or phases in design. An example of the lat-
ter, given by Roozenburg & Eekels (1995), is the 
morphological method, which relates characteristics 
and functions of a design with the variant compo-
nents for that design in an array containing all con-
ceivable solutions. For the identification of design 
concepts, it is interesting to look at the subjects used 
in specific design methods, especially those subjects 
that form an intrinsic part of the method. 

A recently developed methodology for architec-
tural design is presented as Generic Representations 
by Achten (1997). This methodology involves an 
approach to the identification of design content in 
architectural graphic representations. Its hypothesis 
is that graphic representations made during the de-
sign process imply the design decisions that are 
made. The research shows how it is possible to ex-
tract such design decisions from the graphic repre-
sentations, by inferring the declarative knowledge 
embedded in these representations. The methodol-
ogy proposed by Achten (1997) involves using ge-
neric representations, and the design knowledge ac-
quired from them, as a model for procedural 
decision-making in design. 

Many design methods, like the example given 
above, develop design aids, such as archetypes, de-
sign patterns, proportional or other measuring sys-
tems, rules for design schemata for instance for floor 
plans and elevations, and so on. These tools can be 
regarded as the design concepts that are applied in 
the context of the design situation at hand, using es-
tablished procedures from the design method. The 
definitions of these concepts are not always clear 
and explicit but may involve implicit knowledge 
about the usage and meaning of the concepts them-
selves and of the procedures for using them in de-
sign. The formalisation of this kind of concept into a 
Feature Type requires that all relevant knowledge be 
made explicit, which may involve formalisation of 
other concepts and knowledge about concepts that 
have not been identified explicitly before. Classifica-
tion strategies will help to identify these. 

2.1.2  OOA strategies for classification 
The term classification in Object Oriented Analysis 
refers to the task of the software engineer to identify 



classes of objects in the domain for which software 
is to be developed. These classes then form the 
backbone for the design of procedures and data stor-
age of that software. According to Sowa (1984) 
there have only been three general approaches to 
classification: 
1 Classical categorisation 

The criteria for sameness of objects is formed by 
their properties: objects that have one or more 
properties in common belong to a category. 

2 Conceptual clustering 
First, the conceptual descriptions of classes are 
formulated, then objects are classified according 
to these classes using a ‘best fit’ method. 

3 Prototype theory, or classification by example 
The class is not defined conceptually, but by 
means of an example: a prototype. Objects are 
member of the class only if they sufficiently re-
semble the prototype. 

 
In practice of Object Oriented Analysis, these ap-

proaches are combined and/or followed sequentially. 
Classification forms the main starting-point not only 
for the identification but also for the design of object 
classes. It supports the determination of structures of 
classes and of the structure of data and behaviour of 
these classes. As such, these approaches to classifi-
cation are valuable also during the definition of Fea-
ture Types. 

2.2 Decisions in Feature Type definition 
Definition of a Feature Type is a procedure that is 
very similar to the definition of object classes in OO 
approaches for which many strategies and checklists 
have been described, e.g. Booch (1994). Aspects that 
need to be considered when defining a Feature Type 
are the following: 
– Bottom-up versus top-down 

A top-down approach allows the designer to rep-
resent the logical hierarchies that are found in the 
domain of architecture, whereas a bottom-up ap-
proach stimulates the re-usage of existing Feature 
Types. 

– Typical versus non-typical 
Is the information to be formalised typical for the 
concept, or does it merely concern a characteristic 
of a particular instance of that concept? This has 
to do with the reusability of the concept: when 
too much information is included in the Feature 
Type, then the reusability of the concept will be 
less: perhaps some less common characteristics 
should not be defined as part of the Feature Type, 
but modelled as instance level relationships for 
particular Feature Instances only. 

– Wide structures versus deep structures 
Booch (1994, p. 140) discusses the subject of 
how to choose the inheritance relationships be-
tween classes of objects: deep inheritance trees 

tend to have classes that are less interdependent, 
but may not exploit all commonality; wide inheri-
tance trees result in smaller individual classes, re-
using other classes, but their complexity will be 
harder to understand. A similar problem exists 
with other relationships between classes, such as 
decomposition. 

– Presentation versus representation 
This concerns the distinction between how a con-
cept is presented to the user, e.g. on screen, and 
what actually comprises the concept. The latter 
kind of information must be modelled and stored 
and is used to generate the data for presentation. 

– Choice of relationship: specialisation, decompo-
sition, association, or specification 
For the definition of the relationships between 
Feature Types, these four relationships are avail-
able in the framework. Specialisation results in 
the definition of sub-types inheriting from super-
types. The other three kinds of relationships are 
given a name by the designer to describe their 
role in the definition of a Feature Type. 

– Redundancy, completeness, and consistency 
Although modelling a design information struc-
ture should aim at minimal redundancy and 
maximal completeness and consistency, it must 
be realised that the optimal configuration of in-
formation does also rely on aspects like reusabil-
ity and practicability. Especially these two as-
pects will often justify certain levels of 
redundancy to exist in a collection of Feature 
Types. The pursuit for completeness should al-
ways be considered in the context and purpose for 
which a Feature Type is to be used and in relation 
with the amount of information that is likely to be 
available at the time of modelling or that design-
ers are willing to provide. From the point of view 
of information management, consistency should 
always be pursued, yet in creative design, incon-
sistency may, to a certain degree, be acceptable. 
Moreover, the option to be inconsistent in dealing 
with information during design is often consid-
ered an important factor in creative processes. 

2.3  Scenarios for Feature Type definition 
Three distinct situations are recognised in which 
Feature Type definition may be initiated. 
  
1 Feature Type definition from scratch 
2 Feature Type definition from a prototype 
3 Feature Type recognition. 

2.3.1 Feature Type definition from scratch 
The first situation in which Feature Type definition 
is initiated is when a designer (or e.g. an organisa-
tion for standardisation) decides to formalise a con-
cept that has not necessarily been modelled in terms 
of Features before. The formalisation of such a con-



cept is started from scratch. For this approach, a pro-
cedure is described in this section, which guides a 
designer through the various decisions to be made 
when defining a new Feature Type. This procedure 
leads to a selection of the appropriate class of Fea-
ture Type and assesses the definition of all its attrib-
utes, possibly resulting in the definition of other Fea-
ture Types or the instantiation of Feature Instances. 

The Figures 1 to 4 show the procedure for formal-
ising a concept and defining a Feature Type. This 
procedure assumes that the designer has already 
identified the concept. It comprises four diagrams 
that guide the designer through a number of deci-
sions regarding the contents of the concept. Diagram 
1 starts with the determination of the primary nature 
of the concept, leading to the choice of the class of 
Feature Type that is to be defined. It distinguishes 
procedural, geometric, and constraint concepts from 
all others. This distinction may lead to the definition 
of a Handler Feature Type, a Geometric Feature 
Type, or a Constraint Feature Type respectively. If 
none of these apply, one is to proceed with diagram 
2 of the procedure. 

A Handler Feature Type requires the selection of 
the event that is to trigger the procedure defined by 
the handler. The parameters for this procedure need 
to be declared, meaning that the types are specified 
of the Features that can be passed as parameters to 
this procedure. The procedure itself must be defined, 
using one of the procedural languages made avail-
able by the design system. 

In case of a geometric nature of the concept, a 
Geometric Feature Type is defined. This type re-
quires selection of the parametric geometry that it 
represents. What kinds of parametric geometry are 
available depends on the geometry-modelling engine 
that is integrated with the design system. The se-
lected geometry provides the types of the parameters 
that must be provided by instances of the Geometric 
Feature Type; these parameters are given from 
within the context of the geometry-modeller. The 
Geometric Feature Type further declares these pa-
rameters by providing the types of Features that can 
be passed as parameters. 

For Constraint Feature Types, the type of con-
straint needs to be indicated, which depends on the 
availability of constraint solvers in the design sys-
tem. Once the constraint type is selected, the pa-
rameters required by this constraint are known and 
the Constraint Feature Type further declares these as 
the types of Features that can be passed. 

After the definition of any of the above Feature 
Types, there may be remaining aspects of the con-
cept that have not yet been taken into account as pa-
rameters. If this is the case, the defined Feature Type 
is itself contained in a larger Feature Type, a Com-
plex Feature Type, which must be defined next.

 

Figure 1. Diagram 1 of the procedure for Feature Type defini-
tion. 

 
First, the definition of the current Feature Type is 

finished using diagram 4 of the procedure. After 
that, the definition of the containing Complex Fea-
ture Type can be started, which takes the Feature 
Type that has just been defined as its first attribute. 

Diagram 2 shows how to proceed when the con-
cept does not lead to the definition of Handler, 
Geometric, or Constraint Feature Type. First, all the 
attributes of the concept are listed that represent data 
to be stored by Features of this type. For each of 
these data-attributes, it is considered whether or not 
the attribute is relevant to the majority of occur-
rences of the concept. This is not necessarily a very 
clear decision, as the term ‘majority’ already indi-
cates, more so because the possible occurrences of 
the concept may not come into view clearly at this 
time. Nevertheless, it should be questioned if the 
particular attribute really contributes to the concept’s 
significance, or if it is relevant only for the one oc-
currence of the concept that the designer has in 
mind. If the latter is the case, the attribute should not 
be defined as a part of the Feature Type, but rather 
be modelled as a relationship at the level of the Fea-
ture Instances. Non-typologically defined relation-
ships form a part of the Features framework that is 
not further discussed in this paper but elaborated in 
van Leeuwen (1999). 
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Figure 2. Diagram 2 of the procedure for Feature Type defini-
tion. 

 
The number of data-attributes that are considered 

relevant for the Feature Type’s definition are 
counted. If this number is exactly one, then the base-
type of this attribute must be determined. For attrib-
utes that represent a string, integer, real, or Boolean 
value, a Simple Feature Type is defined. For attrib-
utes that represent an identifier chosen from a given 
list of identifiers, an Enumeration Feature Type is 
defined. If none of the above is the case, then the at-
tribute itself represents a complex information struc-
ture, which must be represented by another Feature 
Type. Because this attribute is also the only data-
attribute of the concept, it might in fact be that this 
attributes represents the concept itself. This is par-
ticularly true if no behaviour attributes are to be de-
fined for this concept (see diagram 4), meaning that 
the concept exhibits no other characteristics than 
those represented by this attribute. Therefore, pro-
moting this attribute to be regarded as the concept it-
self should be considered. If this is found to be the 
case, the procedure should be restarted, taking the 
notion of this attribute as the notion of the concept. 
Else, the procedure is continued at diagram 3, where 
the attribute will be the first and only attribute of a 
Complex Feature Type. 

 

Figure 3. Diagram 3 of the procedure for Feature Type defini-
tion. 

 
If the number of relevant data-attributes of the 

concept is greater than one, then a Complex Feature 
Type needs to be defined and the procedure is con-
tinued at diagram 3. This is also the case if no attrib-
utes are found relevant. This may appear to be an 
odd case, formalising a concept that has no charac-
teristics, yet the mere existence of a Feature Type 
with a given name may be sufficient to represent a 
particular design concept at certain stages in the de-
velopment of a design or design theory. Perhaps 
later the content of the concept will become clearer 
and attributes will be added to the Feature Type that 
represents it. Also, behaviour attributes are yet to be 
dealt with, at diagram 4, which may give more 
meaning to the Feature Type being defined. Con-
cepts with no data-attributes at all are modelled as 
Complex Feature Type that have no components. 

If the procedure leads to diagram 3, this means 
that the concept will be represented by a Complex 
Feature Type. All data-attributes of the concept are 
to be defined as components of the Complex Feature 
Type, which are given a role name and role type 
(decomposition, association, or specification). For 
every relevant attribute of the concept the question 
must be answered whether or not the attribute has a 
constant value for all occurrences of this concept. If 
this is true, the Complex Feature Type will define an 
Instance Component, which is formed by a relation-
ship to a Feature Instance. Possibly, this Feature In-
stance needs to be created. 

For attributes with a value that varies for the dif-
ferent occurrences of the concept, a Type Compo-
nent is to be defined for the Complex Feature Type. 
This is a relationship to another Feature Type, 
which, during instantiation, results in one or more 
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relationships to Feature Instances. Possibly, the re-
lated Feature Type does not yet exist and must be 
defined in a new procedure started at diagram 1. For 
Type Components, the cardinality, domain, and de-
fault value must be specified. 

After a component has been defined for each 
data-attribute of the concept, the procedure is con-
tinued at diagram 4 with the definition of the con-
cept’s behaviour. 

The fourth and last diagram of the procedure for 
defining a Feature Type adds behaviour to the type’s 
definition by means of adding event handlers. First, 
a list is made of all the behaviour-attributes of the 
concept being formalised. As with the data-attributes 
in diagram 2, all those attributes are eliminated that 
bear relevance only to certain instances of the con-
cept and are not significant to the intrinsic notion 
that the concept represents. 

For each of the remaining behaviour-attributes, 
the event is specified that will trigger the particular 
behaviour, the event handler, of the instances of this 
Feature Type. Next, it must be determined if the pa-
rameters that are to be assigned to the event handler 
will be assigned in a similar manner for all instances 
of the Feature Type, or if each instance will assign 
the parameters in their own particular manner. If the 
way of assigning parameters does not vary per in-
stance, the parameter assignment can be done at the 
level of the Feature Type, which results in relating a 
Handler Feature Instance, containing the parameter 
assignment, to the event handler. This Handler Fea-
ture Instance may need to be created in case it does 
not already exist. 

In the case of ‘per-instance’ assignment of pa-
rameters, only the Handler Feature Type can be 
specified for the event handler. Again, this Handler 
Feature Type may need to be defined if it does not 
already exist. The actual parameter assignment is 
done during instantiation, when an instance of the 
specified Handler Feature Type is created. 

After all the behaviour-attributes have been for-
malised into event handlers, the definition of the 
Feature Type can be concluded by specifying the 
domain for the instances of the type, and a default 
value. The kind of content of both domain and de-
fault value depends on the class of Feature Type that 
has been defined. 

2.3.2 Feature Type definition from a prototype 
The second scenario, Feature Type definition from a 
prototype, is the situation where the designer ac-
knowledges a particular pattern of information, 
modelled in structures of Feature Instances, as repre-
senting a particular concept that will recur during the 
same or other design cases. The definition of a new 
Feature Type can then be done on the basis of the 
structure of Feature Instances that was modelled us-
ing relationships at the instance level. 

 
Figure 4. Diagram 4 of the procedure for Feature Type defini-
tion. 

 
The ‘prototype’ that the designer has built by cre-

ating this structure of Features is turned into a new 
complex Feature Type that defines the relationships 
as its components. From this point on, this scenario 
follows a procedure similar to that of the first sce-
nario, as described above. 

2.3.3 Feature Type recognition 
The procedure of turning a prototype Feature struc-
ture into a Feature Type definition could also be ini-
tiated by a design system. Using pattern-matching 
algorithms, a design system can search for recurring 
patterns of Features and relationships at the instance 
level. Once such a recurring pattern has been found, 
it may be proposed to the designer as a concept of 
design. 

An important issue in the original area of Feature 
model in Mechanical Engineering is Feature recog-
nition. In that area, Feature recognition has the 
meaning of recognising Features from a given geo-
metric model. The geometry is analysed and 
searched for patterns of geometry that match the 
definition of known Feature Types. Once such a 
match is found, the geometry can be replaced by an 
instance of the found Feature Type. In this manner 
the geometric model, which is poor in semantics, is 
converted to a Feature model that provides all the 
additional information necessary to, for instance, 
manufacture the geometry of the designed product 
with the available machinery. 

Architectural design systems may well benefit 
from a similar approach to designing elements of a 
building. While the designer uses generic geometric 
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modelling tools, the created geometry may be ana-
lysed and interpreted as a structure of Features that 
semantically enrich the geometry with detailed ar-
chitectural information. This approach is, of course, 
limited to those Features that can actually be dis-
criminated on the basis of their geometric represen-
tation. Using inference methods, these geometrically 
recognised Feature structures may eventually be en-
hanced with additional Features that are defined as 
relationships to the geometric Features. For exam-
ple, once a wall Feature has been recognised from 
the geometry created by the designer, Features such 
as material, construction method, cost, maximum 
load, etc. may be inferred from the existence of the 
wall Feature and added to the list of relationships of 
that Feature. 

Another kind of Feature recognition that can as-
sist the designer in building up a consistent and se-
mantically rich design model, is to try and recognise 
patterns of Features not from a geometric model but 
from the Feature model as it is being created. Here, 
it is not the bare geometry that is matched to defini-
tions of Feature Types. Instead, in the Feature model 
the instance-level relationships between Feature In-
stances are analysed and compared to the structures 
of Feature Types in available libraries. In this man-
ner, a given constellation of Features that are interre-
lated by the designer during modelling at the in-
stance-level, can be replaced by an instance of a 
Feature Type that has been found to define the same 
relationships at the type-level. This facility of the 
design system supports the designer in creating con-
sistent models and adding knowledge to the model 
that is implied by the design actions. The degree of 
similarity between found Feature structures and the 
relationships in a particular Feature Type should 
possibly be variant, allowing the designer some 
freedom in using accustomed terminology and in-
cluding cases that look similar to defined Feature 
Types. Mainly the latter may well appear to be a 
stimulant to the designer, since the system is now 
encouraging the creativity of the designer and help-
ing the development of the design as it proceeds. 

Figure 5 shows the procedure that is followed in 
case the user or the system requests a Feature recog-
nition process to be executed. First a group of Fea-
ture Instances must be selected from which known 
Feature Types are to be recognised. Selection of this 
group can be performed entirely by the designer, 
supported by design system interaction or com-
pletely automatic by a design application. From the 
Feature Instance group the corresponding Feature 
Types can be determined. 

 

Figure 5. Procedure for computer aided Feature Type recogni-
tion. 

 
In the Feature Type Library, some Feature Types 

are marked as a root type, namely those Feature 
Types that are considered a main architectural con-
cept (e.g. wall, floor, space). The root Feature Type 
will be the objective of the recognition process. The 
question now is whether the selected group of Fea-
ture Instances contains an instance of such a root 
type: a root instance. In searching for a match be-
tween a possible root instance and the root types in 
the library, inheritance must be considered, meaning 
that a match is also made against sub-types in the li-
brary. 

If this root instance cannot be identified, addi-
tional heuristics are needed to introduce an appropri-
ate root instance. For example, four Feature In-
stances of an assumed Feature Type called Space 
Boundary could geometrically constitute a space. If 
this geometrical relationship is detected then a Fea-
ture Type Transition procedure is executed that in-
fers an instance of the Feature Type Space. After 
that, the Feature Recognition procedure is restarted. 
Identification of the root instance in the selection is 
not necessarily a completely automated task; it can 
also be assisted by the user. 

Once a root instance is found or inferred, the Fea-
ture Types from the selected group of Feature In-
stances are matched against the structure of the root 
Feature Type in the Feature Type Library. Not all 
Feature Types related to the root Feature Type in the 
Feature Type Library are necessarily present in the 
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selected group of Feature Instances. The relation-
ships between the instances are not yet considered in 
this stage of the recognition process. 

Now the question is raised whether the similarity 
match is good enough. This decision can either be 
taken automatically by the system, using thresholds 
for the number and severity of missing instances, or 
in discussion between the system and the user. If the 
similarity is too low then additional heuristics are 
required, for instance a thesaurus of Feature Type 
names to detect possible cross-references between 
the used names. Feature Type Transition is executed 
and the Feature Recognition process is restarted. 

If the Feature Type similarity is sufficient then 
the Feature Type relationships are determined from 
the selected group of Feature Instances. Considering 
the relationships in the Feature Type Library cluster, 
starting from the root Feature Type, they may: 
– be absent in the selected group of Feature In-

stances, 
– have a different typology (e.g. association instead 

of decomposition), or 
– have a different role name. 

 
First, a match is performed not taking these dif-

ferences into account, just considering the topology 
of the structure. For this purpose graph matching 
techniques are used. Again, the successfulness of 
this match can be determined automatically by the 
system using thresholds or in discussion between the 
system and the user. Additional heuristics provide 
rules that can add or replace relationships in order to 
fit the selected Feature Instances in the structure of 
the Feature Type found in the Library. Since Feature 
Based modelling allows for describing a specific 
building concept in several ways, this process sup-
ports the conversion of different description styles to 
one generic style. 

The Feature recognition procedure exits if one of 
the heuristics fails. At that point there are several 
possible results of the recognition process: 
1 One or more root instances have been identified 

or inferred and the structure of instance relation-
ships found between Feature Instances in the 
model has been replaced by an instantiation of the 
structure found in the Feature Type Library. 

2 One or more root instances have been identified 
or inferred but a proper match of the relationships 
in the model to Feature Types in the library could 
not be made. In this case, the user can decide to 
use the relationships modelled at the instance 
level to define a new Feature Type: this is sce-
nario 2 described in section 2.3.2 as Feature Type 
definition from a prototype. If a partial match 
could be made, then the user can alternatively de-
cide to define a sub-type of the partially matched 
Feature Type. 

3 No root types known from the Feature Type Li-
brary could be identified or inferred in the se-

lected group of Feature Instances. Again, the user 
may decide to define a new type from the proto-
type instances, which in this case would also lead 
to the definition of a new root type. 

3 DISCUSSION 

The proposed strategy for formalising architectural 
design knowledge is in fact a design process in it-
self. It is the design of architectural design knowl-
edge; design at a meta level. As such the meta de-
sign level process dangers from the same pitfalls as 
the architectural design process illustrated in the in-
troduction of this paper, namely ill-defined problem, 
ad hoc process cycles, etc. The three described 
strategies offer a style guide for architectural design 
knowledge modelling based on Feature technology. 
FBM allows for describing a building concept in dif-
ferent ways using (slightly) different Feature mod-
els. 

Applications, however, that will share FBM data 
require a predefined Feature model structure. With-
out this structure or additional knowledge it is im-
possible to extract information from the Feature 
model of a design. Therefore generic Feature Type 
libraries are needed that contain standardised Fea-
ture model structures. In that sense generic Feature 
Type libraries serve the same goal as standardisation 
efforts in product modelling (e.g. STEP Application 
Protocols, Industry Foundation Classes). In contrast 
with the STEP AP’s, a generic Feature Type library 
is dynamic, it can be update anytime leaving the ex-
isting Feature Type structure unchanged. Secondly 
Feature Type libraries can contain Feature Instances 
also. This is especially useful in case of specifying 
supplier’s information with a limited variable do-
main (e.g. the width of a door is either 800 mm, 820 
mm or 840 mm). 

Inconsistency and incompleteness is an inherent 
characteristic of Feature Based Modelling. This can 
be regarded both a pro and con of this modelling ap-
proach. In this respect, the following conclusions are 
drawn: 
– Inconsistency and incompleteness is an elemen-

tary part of architectural design and thus a pre-
requisite for architectural knowledge modelling. 

– Inconsistency and incompleteness are designer 
dependent. Apart from checking norms and stan-
dards there is no general rule a designer can count 
on for maintaining consistency. Also, incom-
pleteness may be a target of a design process. 

– FBM, as currently developed in this research, 
does not support any kind of strategy for main-
taining consistency and completeness for a spe-
cific design part or design task. Future research 
must be conducted on this issue, as is done in the 
work of Eastman et al. (1997a; 1997b). 
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