
1 SHARING DESIGN KNOWLEDGE

Sharing design knowledge is a prerequisite for col-
laboration in design, which is one of the key factors
of successful design in building and construction.
Collaboration with a great variety of disciplines and
partners is necessary in almost all stages of a design
project and involves the exchange of data describing
the design, but also exchanging the rationale of the
design.

Design knowledge is the totality of on the one
hand information about a design, including the data
that describes the design and the contextual meaning
of this data, and on the other hand information about
how a design is achieved and evaluated.

We can distinguish design knowledge into the
kind of knowledge that is particular to a design pro-
ject and the kind of knowledge that is used in pro-
jects but is of a generic nature. This includes both
generic knowledge from design theories and, for ex-
ample, knowledge about construction products and
materials.

A third kind of design knowledge is design cases.
Knowledge from previous designs is continuously
built up, consciously or unconsciously, in the minds
of designers and applied, again consciously or un-
consciously, in new design projects.

While digital media have already greatly im-
proved the efficacy of collaborative design, the pre-
vailing ways of exchanging digital design informa-
tion are often semantically poor or incorrect, still
leading to mistakes in interpretation, by humans and

by computer-systems. An increased semantic level
of design data may help to reduce faults and there-
fore will increase the efficiency of the collaborative
design process.

2 FORMALISED DESIGN KNOWLEDGE

One way to increase the semantic level of design
data is to develop semantically more detailed and
more explicit standards for data exchange. The In-
dustry Foundation Classes (URL 1), under develop-
ment by the International Alliance for Interoperabil-
ity, have a great potential to become the de facto
standard for data exchange exactly because they will
bring the data exchange to a higher semantic level.

Innovative design, however, incites the need for
expressing novel concepts that cannot be described
using the standards. In these cases, designers may
feel limited by standards since they only provide
means to express design intentions on a generic level
that cannot catch much of the specific intentions. To
provide computer-support for design reasoning,
modelling tools need to allow design concepts to be
defined that exactly represent the rationale of the de-
sign (van Leeuwen 1999). This would allow a design
support system to be tailored for a particular de-
signer.

To formally define design concepts is a form of
knowledge modelling. The concepts represent the
body of design knowledge that was used to arrive at

Published as: van Leeuwen, J.P. and S. Fridqvist (2002) Design Knowledge Sharing through Internet Application. In:
Proceedings of the Concurrent Engineering Conference 2002, Cranfield, UK, July 27-31, 2002.

Design Knowledge Sharing through Internet Application

J.P. van Leeuwen & S. Fridqvist
Eindhoven University of Technology, Eindhoven, The Netherlands

ABSTRACT: This paper presents the intermediate results of a research project that aims to develop and apply
Design Knowledge Servers (DesKs) in the building and construction industry. This project builds on a model-
ling approach called Feature-Based Modelling (FBM) that is developed to provide a dynamic environment for
handling design information. The Design Knowledge Servers apply this modelling approach in a network to
provide a distributed multi-user environment for sharing design knowledge. Such a network serves the re-
quirements of collaborative design and is useful for other purposes, such as publication of formalised product
datasheets. The paper briefly provides the background of the knowledge modelling approach underlying this
project and describes the design and implementation issues of the Design Knowledge Servers and the services
they provide.

the particular design solution, and they can be re-
used for other designs.

Formalised building product information is an-
other way to enhance the semantic levels of design
data. Although product information is increasingly
often made available digitally, the format is mostly
ill structured, such as a web page with text and im-
ages that can only be interpreted by human readers.
To search this kind of format is very time consuming
but can be greatly enhanced if the information struc-
ture allows automated searches (Bakis & Sun 2000).
Once product information is made available in a
structured way that allows computers to interpret the
content, it can form a much more valuable source for
design support systems in providing intelligent feed-
back and suggestions to the designer (Augenbroe
1998). Again, standardised models will play an im-
portant role in the formalisation of product related
design knowledge. However, this role is limited for
two reasons: firstly, standards, in the way they are
currently developed, cannot be expected to both
reach sufficient level of detail and to remain suffi-
ciently generic for the required general applicability
that they are developed for. Secondly, new products,
materials, and construction methods will continu-
ously appear, which will require additions to any but
the most generic standards.

3 DESIGN KNOWLEDGE SERVERS (DesKs)

This paper describes the development in a research
project that is called DesKs, Design Knowledge
Servers. The project’s overall aim is to develop an
Internet-based environment for the support of col-
laborative design. More specifically, DesKs will
provide a shared environment for designers to model
design concepts in a formal manner and to use these
formalised concepts in design modelling and reason-
ing. The project is based on the modelling paradigm
of the Feature-Based Modelling (FBM) framework,
as defined in (van Leeuwen, 1999). Using this
framework to model design concepts both in a ge-
neric manner and for a particular design case, the
DesKs project will allow the designer to share his
design knowledge with others and to use the knowl-
edge they provide. This capability makes it possible
to use DesKs to manage collaborative design pro-
jects, but also to publish design information, or to
share generic design knowledge in a scope beyond
particular projects.

The DesKs project is strongly related with a par-
allel project that develops the technology of Feature
Type Recognition (FTR). The FTR project is con-
ducted by Sverker Fridqvist at Eindhoven University
of Technology (Fridqvist and van Leeuwen, 2002).
In abstracted terms, it will lead to the definition of
algorithms and the development of prototype tools
that allow the computer to find correspondences be-

tween the outcome of design activities and stored
design knowledge. This technology will be useful in
many applications, such as searching for building
product information that is published through DesKs
(see also section 4). Together with the facilities of
the DesKs project, it forms a first small step in the
direction of making computers understand what we
design.

3.1 Feature-Based Modelling in Architecture and
Construction

The DesKs project involves the development of a
system that can be used to build a network of Design
Knowledge Servers based on the FBM framework.
Two kinds of software applications are envisioned
that in principle build on the same set of functional
specifications but provide different types of access
to shared design knowledge. The common character-
istics of these applications are described in this sec-
tion.

The following paragraphs describe the most im-

portant characteristics and implementation issues of
the FBM framework that serve requirements of de-
sign support.

3.2 Property oriented modelling
The FBM framework for modelling is property-
oriented, meaning that it takes the properties of real-
world things and concepts as the basic entities of
modelling and allow the modeller to compose a
model of the real world (or design) by collecting
properties that define the subject of modelling (van
Leeuwen et al., 2001). The FBM framework, in prin-
ciple, does not distinguish properties from objects;
both are called features. It depends on the context in
which a feature is used whether it functions as a
property or a key-object in a model. This approach is
better able to follow the dynamic way that informa-
tion is dealt with during design, compared to ap-
proaches that predefine the properties of objects.
The meaning assigned to information during the
various design stages is updated continuously, as the
design develops. A ‘spatial function’ feature, for ex-
ample, may at one stage in the design process be re-
garded a key-object in the model, while at a later
stage it is assigned as a property to a ‘space’ feature
that represents the space where the particular func-
tion is performed.

3.3 User-defined typologies
Design concepts are formally modelled, using the
FBM framework, into so-called feature types. Fea-
ture types provide the templates for creating feature
instances that represent the actual design. In product
modelling terms: feature types define schemas for

models of feature instances. While most formal
models of design provide a fixed schema, the FBM
framework allows designers to extend the schema
with their own definitions of feature types: custom
design concept formalisations. Designers can add to
standard definitions and thus build up their own ter-
minology and library of concepts used for design
while still keeping their models accessible for oth-
ers. The extendibility of the conceptual schema also
serves many other purposes where new typologies
must be added to standard collections, for example
to represent new construction products or methods.

3.4 Flexibility in modelling
The property-oriented way of modelling makes the
relationships between chunks of information in the
model very flexible. If the space that a spatial func-
tion is assigned to is removed because it was merged
with another space, the spatial function, as a prop-
erty, will continue to exist in the model. Not only
will it be available for re-assignment, more impor-
tantly it reflects the continued significance of the
spatial function in the design. The intention of re-
moving a space object from the model does not nec-
essarily imply that all its properties are to be re-
moved as well, although a new assignment for the
spatial function property might be required. The in-
dependence of properties from objects provides the
kind of flexibility in modelling that corresponds well
to the dynamic way of thinking that is characteristic
for creative design.

In the FBM framework, this kind of flexibility is
made possible by the fact that all feature types and
feature instances have an independent existence. Us-
age of one type by another is always by reference to
that type; similarly, instances that have other fea-
tures as properties or parts do not ‘own’ these fea-
tures but merely refer to them.

3.5 Ad-hoc modelling
Additional flexibility is made available at the level
of feature instances, by the capability of the model
to deal with ad-hoc properties and relationships be-
tween instances. The properties and relationships
that can be assigned to feature instances are not re-
stricted to those defined by the corresponding fea-
ture types. The user can add any required property or
relationship to an instance without prior modifica-
tion of the type. Again, this reflects very well the ac-
tual way of working that is often encountered in de-
sign: typical solutions are used in design, but
adaptations or additions are required to complete a
particular design case. This can be done in the FBM
framework without the need to find or create an ex-
act typology first.

3.6 Implementation: object-model and meta-classes
The flexible and extendible structures of feature
data, described in the previous paragraphs, are made
possible in the FBM framework by the implementa-
tion of a set of meta-classes. These meta-classes de-
fine a run-time object model of feature types and
feature instances. The user of the framework appears
to be working with feature instances as instances of
feature types, but the system implements both types
and instances as objects of the meta-classes. This
approach provides the flexibility that is necessary to
allow users to define new types at run-time and to
allow instances to deviate from the types. For details
about the complete set of meta-classes, their pur-
poses and capabilities, the reader is referred to (van
Leeuwen, 1999).

The next paragraphs describe the characteristics of
the DesKs technology that serve requirements of de-
sign collaboration.

3.7 Version management
An important issue in collaborative activities is how
to control versions of information. Keeping track of
versions of information serves three objectives: to
record the history of information in order to allow
undo-operations; to allow changes to data without
compromising references to previous versions of
that data; and to make it possible to inspect and
compare versions.

Current practice document management systems
provide version control, but only at the document
level. For collaborative design, version control is re-
quired at a finer level of detail for a combination of
reasons. The number of people working with design
data is large, the total collection of design data is
large, documents are not always the basis for stor-
age, and perhaps most importantly, there are strong
relationships between chunks of data, within docu-
ments or crossing the scope of documents.

The DesKs technology has strong support for ver-
sion control of both feature types and features in-
stances. Editing of feature data (both types and in-
stances) takes place via a checkout-and-commit
mechanism, through which users get temporary edit-
ing privileges. While data is checked out for editing,
previous versions can continue to be used. After ed-
iting, data can be either submitted as a new version,
or committed as a revision. Revisions of feature data
are inferior to versions in the sense that they cannot
yet be actively used in modelling operations, only
for further editing of the data. This reduces the num-
ber of versions and allows distinction of which sub-
missions are of real interest and which have only an
intermediate status. Only revisions of the latest ver-
sion are backed up by the system.

Versions are distinguished by the combination of
a major version number M and a minor version
number n in the form M.n. New version numbers are
incrementally assigned upon submission and minor
version numbers are reset to zero after the submis-
sion of a new major version. Submitting a version to
the system can lead to a new major version or a new
minor version. Minor versions indicate backwards
compatibility, which means that the version can also
be used in place of previous minor versions of the
same major version. For example, adding a compo-
nent to a feature type leads to a new minor version
because it does not compromise the functionality of
the type in places where the type without that prop-
erty was expected. New major versions are not
backwards compatible, meaning that they cannot be
used in place of any preceding versions. Modifica-
tions such as removing properties or changing the
type of properties will generally lead to new major
versions. Whether a submission is a new major or
minor version, is determined in the first place by the
user. However, the system will enforce major ver-
sions when it detects backwards incompatibility.
Upgrading in instance to a more recent minor ver-
sion of its type is generally possible and can proba-
bly be done automatically, although this functional-
ity has not yet been studied in detail. An
incremented revision number is assigned after each
time a revision is committed or a version is submit-
ted; the revision number uniquely identifies a revi-
sion or version of the feature data.

3.8 Unique Identification
Feature types and feature instances must be uniquely
defined. Uniqueness is necessary not only within
their direct context, but in a worldwide scope. En-
forcing this scope of uniqueness guarantees the abil-
ity of sharing types and instances in any possible
situation. The mechanism adopted for providing
uniqueness within this wide scope is that of name-
spaces, similar to the way namespaces are used in
XML. In this application of the notion of name-
spaces, they are related to a URI for global identifi-
cation (Uniform Resource Identifier); often a URL is
used for this purpose. Once the uniqueness of a
namespace is established, all unique names within
the namespace are globally unique as well.

Full references to feature data in the FBM frame-
work include the identifier of the namespace, the
identifier of the feature data (type or instance) and
the revision number of the data, which is a unique
number for each version or revision.

3.9 Ownership, authentication and authorisation
Each individual feature type or feature instance is
owned by an identifiable user. Users are identified
by their email address and are authenticated using a

password. Each initial access to an application of the
FBM framework will require authentication. Users
have full access rights to the features they own and
can grant anonymous access or access rights re-
stricted to other users or groups of users. Authorisa-
tion will take place automatically upon each access.
Namespaces have owners as well and can have re-
stricted access. Access rights set for individual fea-
tures in a namespace impose restrictions further to
those that are set for the namespace as a whole.

Groups of users can be defined to represent teams
in collaboration projects or to specify other kinds of
group access to certain data. User can acquire access
rights through membership of a group, but higher
individual rights will not be restricted by such mem-
bership.

While the authorisation mechanism is still under
development, the following levels of access rights
are currently distinguished, listed in incremental or-
der:
• Copy (read but only for copy, not for refer-

ence)
• Read (read but not instantiate)
• Instantiate (relevant for types only)
• Modify (change contents but not add)
• Add (add contents)
• Write (includes delete and rename)
• Ownership (includes the right to set access

rights and to transfer ownership)

3.10 Access in a distributed environment
A previous implementation of the FBM framework
supported access to remote data by offering the ca-
pability to download feature data from URL’s. This
approach only supported read-access to the remote
data and thus solved only a small aspect of the col-
laboration problem. It did not support real-time col-
laboration in any way.

The current implementation of the framework
supports direct remote access to data. Together with
the mechanisms for authorisation and checking out
data, this provides the means to collaborate in a dis-
tributed environment; distributed not only in terms
of distributed users, but also in terms of distributed
data. Users can access remote data as if it were local
data, albeit that they are subject to the authorisation
settings of the remote system.

Having the option to distribute data, project man-
agers can now decide to leave the physical owner-
ship of data where it belongs: with the experts that
are responsible for it.

4 APPLICATIONS AND IMPLEMENTATION

The FBM framework provides a two-layered object-
model of feature types and feature instances, through
the implementation of a third layer of meta-classes.

The framework has been implemented such that ac-
cess to remote data is possible as long as the data is
available online. The DesKs project aims to deliver
two applications (see Figure 1) that provide the
framework’s functionality to support collaborative
design in two different ways:

1. DesKs WebServer application
This application is targeted primarily at pub-
lishing or hosting design knowledge and can
be accessed only remotely. The application
runs in conjunction with a common web server
and provides two kinds of access. The first
type of access is through HTML pages and is
available for web browsers. Although it is
probably possible to develop a web interface
that provides almost full modelling functional-
ity, this is not an objective of this type of ac-
cess. The web interface will be restricted to
browsing the feature data in the namespaces
that are available through the server; adding or
modifying data will not be made possible
through this interface.
The second type of access is through Web Ser-
vices. Web Services provide enhanced func-
tionality by allowing clients to execute proce-
dures at the server. A dedicated client will be
necessary to access Web Services. However,
the protocol of using Web Services is platform
independent, meaning that clients can be made
available for a wide range of operating sys-
tems.
The development of the DesKs WebServer ap-
plication has not yet been started but is pro-
grammed for prototyping after testing of the
DesKs WebNode application has been con-
cluded satisfactorily.

2. DesKs WebNode application
The WebNode application is targeted for usage
by local users as well as remote users. Part of
this application will function as a node in a
peer-to-peer network. Each node can have
multiple local users and each node has access
to multiple other nodes in the network. Users
can access the local data on the node, but re-
mote data on other nodes as well. This part of
the application is not based on web server
technology, but it does use the common proto-
cols HTTP and SOAP.
Another part of this application functions as
dedicated client to the DesKs WebServers.
This enables the application to search and re-
trieve data from these servers and to work ac-
tively with the data on the servers.

5 IMPLEMENTATION

The implementation of the FBM framework and the
Design Knowledge Servers is made using Micro-
soft’s .NET framework and the C# programming
language (pronounced ‘dot-net’ and ‘c-sharp’, re-
spectively). The functionality of the FBM frame-
work is implemented into a core module to which
the DesKs applications are connected.

The FBM framework’s object-model forms the
programming interface to the core module for the
development of applications. Internally, the object-
model is persisted into a relational database (current
testing uses MS-SQL server). For communication
with other applications, an important feature of the
core module is the import/export capability from and
to XML documents. Feature types can be streamed
from and to XML-Schema’s, and feature instances
can be streamed from and to XML documents. Both
schema’s and documents are validated by a generic
XML-Schema that represents the syntax of the FBM

Figure 1. On the left: DesKs WebServer application for browser or dedicated client access.

On the right: DesKs WebNode application for peer-to-peer networking (van Leeuwen, 2002).

DesKs

☺☺ ☺☺
☺

DesKs
DesKs

DesKs

DesKs

☺
☺
☺
☺

☺

☺
☺

☺
☺

☺
☺
☺
☺

☺

☺

☺
☺
☺
☺

☺
☺

☺ / ☺☺

DesKs

DesKs

DesKs
☺☺ ☺☺
☺

☺☺ ☺☺
☺

☺☺ ☺☺
☺

☺☺ ☺☺
☺

Figure 2. General architecture of the DesKs WebNode application. On the left an instance that is acting as client, on the right
one that is acting as server (van Leeuwen and Fridqvist, 2002).

framework. The XML documents containing the fea-
ture instances are also validated by the XML-
Schema’s that contain the respective feature types.

5.1 Networking DesKs
The peer-to-peer functionality of the DesKs Web-
Node application is built using the .NET frame-
work’s remoting facilities. Simply put, remoting al-
lows objects on a server to be accessed by remote
clients, as if they resided in the local memory of the
client. A WebNode client can have open connections
with multiple servers, which allows the simultane-
ous utilisation and combination of feature data from
various resources. Vice versa, servers allow multi-
user access and provide functionality for sharing
sessions on a server. Sharing sessions allows teams
to work together with the same set of namespaces
and features retrieved from servers. A subscription
mechanism notifies client applications about
changes at the server, to avoid problems with out-
dated information at the remote clients.

Figure 2 shows a general picture of the architec-
ture of the DesKs system as it is currently imple-
mented in the prototype WebNode application. The
figure also indicates, in a simplified manner, the
communication lines between the various parts of
the system, as listed below.

1 The FBMcore module is prepared for multi-

user access, either local or remote. Each local
user of the application communicates with a
private client-session object.

2 Client-session objects communicate with the
single manager object in the application, which
provides the object-model of the FBM frame-
work, including objects for namespaces, fea-
ture types, and feature instances.

3 The manager instantly persists all modifica-
tions through an OLE-DB interface.

4 The initial contact (4a) with remote servers is
made through a broker object that exists at the
remote server and for which a proxy is created
at the client-side (proxies have dotted outlines
in the figure). Each instance of the application
runs a single broker object, but can maintain
proxies for multiple server-brokers. This con-
nection is two-way: the server establishes a
connection back to the client (4b) using a
proxy for the client’s broker object. This sec-
ond connection is used for communications
initiated by the server1 (see also item 7 below).

5/6 Once the connection with the server is estab-
lished, the client-session can retrieve informa-
tion about the server via the broker-proxy (5).
For each remote client, the broker at the server
creates a server-side session (6) with which the
client can communicate as if the server-side
session were a client-session to locally man-
aged data (see also item 9).

7 When a client establishes a connection to a
server, the server creates a server-side proxy
for the broker of the client in order to push
data back to the client on its own initiative. Via
the server-side proxy (7a), the server can get
access to the client-session (7b). This way the
server can notify the client to retrieve updates
for feature data to which the remote user has
subscribed.

8 The server-sessions communicate with the
server-side manager in the same way as client-

1 The reverse communication from server to client could also
have been implemented using remote event handling. How-
ever, experiments have demonstrated that remote event han-
dling does not function properly in all WAN configurations.

FBM / DesKs WebNode (acting as server)

FBMcore module

FBMmanager

DBMS

FBMbroker Local UI

FBMclientSession FBMserverSession

FBMbroker

7a

8 10

6

FBM / DesKs WebNode (acting as client)

FBMcore module

FBMmanager

FBMbroker Local UI

FBMclientSession FBMserverSession

 FBMbroker

1

2

5

10

7b

9

4b
4a

3

DBMS

3

sessions communicate with the local manager
(see item 2).

9 After the brokers have been used to establish
the connections between client and server, and
once the client has connected to its server-side
session and vice versa, proxies will exist on
both sides for the remote session objects. The
broker is no longer needed for communication
that is initiated by the client. Remote feature
retrieval and editing activities related to remote
features will now be executed directly between
client-session and server-session, using proxies
for remote sessions and for feature data that re-
sides in the server-session.

10 Users need to be notified of modifications of
data made by other users. This is done through
a subscription mechanism that registers users’
interests in certain data on a per session basis.
Upon notification by the manager, client-
sessions inform the local UI and server-
sessions inform remote client-sessions of the
modification events.

6 CONCLUSIONS AND FUTURE WORK

This paper described how Design Knowledge Serv-
ers (DesKs) can be used in a wide area network en-
vironment to support collaborative design. Using
DesKs technology designers can take advantage of
the dynamic product modelling approach of the Fea-
ture-Based Modelling (FBM) framework, a prop-
erty-oriented modelling approach in which designers
can formalise design concepts and use these formal-
isations in flexible design modelling. The DesKs
technology can be applied in various scenarios, in-
cluding collaborative design projects, commercially
delivering online design services, building up case-
bases of contemporary and historical designs, and
publishing construction product information in a
format with a high level of semantics.

The prototypes developed for the FBMcore mod-
ule and the DesKs WebNode application have given
us sufficient proof of the feasibility of developing
this kind of client-server system for the support of
collaborative design. The feasibility of applying the
DesKs technology into the practice of collaborative
design has not yet been proven sufficiently and re-
quires significant test cases with experts from indus-
try. These are planned to be conducted in collabora-
tion with industry partners once a sufficiently user-
friendly UI has been developed for the prototype
systems. Future work also includes collaboration
with the supply chain in the construction industry to
investigate the feasibility of using the DesKs tech-
nology in formalising the information resources in
the supply chain.

After testing the current prototype applications,
the DesKs WebServer application will be developed

to provide the FBM framework as Web Services
through common web server technology. The DesKs
WebNode application is designed to integrate the
outcomes of this research project with the results of
the Feature Type Recognition (FTR) research pro-
ject, described in (Fridqvist and van Leeuwen,
2002). This involves using the matching algorithms
in FTR to search WebServers and WebNodes for de-
sign concepts and design solutions that are useful for
solving the designer’s actual design problem. FTR
will open the way for many applications of Case-
Based Reasoning. It can aid the designer in finding
suitable products for a design or in finding similar
design problems and the solutions that exist for
those problems. It helps the designer to re-use his
own or other designers’ knowledge, by matching the
current state of a design model to the body of design
knowledge that is formally represented by feature
types.

The FTR project is still in an explorative phase of
implementing, as is the DesKs WebNode prototype.
Once both developments have become stable, the
FTR functionality will be integrated into the DesKs
WebNode and the DesKs WebServer applications.

Integration of the FBM modelling approach in
other lines of research on design support systems
may well enhance both the DesKs environment and
these various research activities. Two examples of
candidates for integration are the E3DAD project
that studies associative reasoning in design, where
the computer supports designers by providing in-
formation that can be associated to the current
design activities (Segers et al., 2001), and the
DDDoolz project that builds a VR interface to three-
dimensional sketch operations (de Vries et al.,
2001).

The project’s website is publicly accessible and

will be used to distribute the prototypes for public
testing and feedback (URL 2).

7 ACKNOWLEDGEMENTS

This research project has been carried out with fi-
nancial support from Eindhoven University of Tech-
nology and the Portuguese Fundação para a Ciência
e a Tecnologia. It was hosted at the Instituto Supe-
rior Técnico, Lisbon, in collaboration with Prof.
João Bento.

8 REFERENCES

Augenbroe, G. 1998. Building Product Information Technol-
ogy. Executive white paper, Construction Research Center,
Georgia Institute of Technology, 1998.

Bakis, N. & Sun, M. 2000. Intelligent broker for collaborative
search and retrieval of construction information on the
WWW. In: Gudnason, G. (ed.), Proceedings of CIT2000,
International Conference on Construction Information
Technology, June 28-30, 2000, Reykjavik, Iceland.

de Vries, B., Jessurun, A.J., and van Wijk, J.J. 2001. Interac-
tive 3D Modeling in the Inception Phase of Architectural
Design. Eurographics Short Presentations, Manchester,
United Kingdom, September 4 – 7, 2001, pp.265 – 271.

Fridqvist, S. & van Leeuwen, J.P. 2002. Feature Type Recog-
nition – implementation of a recognizing feature manager.
In: Proceedings of the CIB W78 conference Distributing
Knowledge in Building, June 12-14, 2002, Aarhus, Den-
mark.

van Leeuwen, J.P. 1999. Modelling architectural design infor-
mation by features. PhD thesis, Eindhoven University of
Technology, The Netherlands.

van Leeuwen, J.P., Hendricx, A., & Fridqvist, S. 2001. To-
wards Dynamic Information Modelling in Architectural
Design. In: Proceedings of the CIB-W78 International Con-
ference IT in Construction in Africa 2001, CSIR, Division
of Building and Construction Technology, pp 19.1-14.

van Leeuwen, J.P. 2002. Knowledge Sharing for Collaborative
Design. In: Proceedings of the 6th International Conference
on Design and Decision Support Systems in Architecture
and Urban Planning, July 7-10, 2002, Ellecom, The Neth-
erlands.

Segers, N.M., B. de Vries, H. H. Achten, H.J.P. Timmermans.
2001. Towards Computer-Aided Support of Associative
Reasoning in the Early Phase of Architectural Design. Pro-
ceedings of CAADRIA 2001, April 19 – 21, 2001, Sydney,
Australia.

URL’S

1. http://www.iai-international.org
2. http://www.designknowledge.info

