
Fridqvist, Sverker and Jos P. van Leeuwen. 2002. “Serving building product information with design knowledge servers.” In Proceedings of the European Confer-
ence of Product and Process Modelling. Portorož, Slovenia: 9 – 11 September 2002, 301-306.

1 INTRODUCTION

To find applicable components to become parts of a
design is one of the main tasks of a designer (Coyne
et al. 2001). This is true for all kinds of design, for
mechanical engineers as well as for architects. Alas,
the multitude of producers making similar products
makes it an impossible task for any individual to
maintain a good overview of it all. This has pro-
moted the idea of creating computer-based reposito-
ries for component information to assist designers to
find the products they need.

Building design generally involves many persons
that are geographically dispersed. To enable all ac-
tors to work within one environment would greatly
improve collaboration. The design knowledge server
(DesKs) technology is a means to achieve such a
common environment. Additionally, its basic func-
tionality allows a DesKs server to act as a product
information repository.

2 BUILDING PRODUCT INFORMATION

Building products are manufactured to become parts
of buildings and are offered for sale on a general
market, i.e. they are mostly not designed and manu-
factured only for a specific building. Building prod-
uct information is published by the manufacturers to
advertise the products, and to guide building design-
ers in their choice of components for their design.

Traditionally, building product information has
been distributed as printed matter, featuring texts,
pictures, and drawings. With many similar products
from several vendors on the market, it is hard for the
individual designer to have knowledge of them all.
This has created a market for specialised ‘informa-
tion brokers’, who collect, organise and distribute

building product information. However, even with
the aid of brokers, designers have to study the
printed information to learn what specific products
may apply to the current design.

With the advent of CAD as the dominant medium
for describing building designs, many producers
have started to supply information also in CAD for-
mats. This enables the designer to insert symbols or
3D-representations of products into drawings and
models of the building to be (Coyne et al. 2001).
Additionally, the Internet has enabled a direct chan-
nel from building product manufacturers to design-
ers. However, brokers still have a mission to fill to
organise the material, and the designer still must
manually study the information to be able to find
and select a product. This area would benefit from
further computer assistance (Augenbroe, 1998). If
product information were provided in a suitable
format, computers could provide automated searches
for products with the properties required for a de-
sign.

3 DESIGN KNOWLEDGE SERVERS

A design knowledge server, DesKs, is a networked
server that manages and distributes design knowl-
edge, which is created and accessed using client ap-
plications. The main rationale for the system is to
support collaborative design, but it will also serve
other purposes such as creating repositories for pub-
lic design information. For an extended presentation
of DesKs, see (van Leeuwen and Fridqvist 2002).

DesKs are based on the Feature Based Modelling
(FBM) framework, developed by Jos van Leeuwen
at the Eindhoven University of Technology (TU/e)
(van Leeuwen 1999). The DesKs as well as the FBM
framework is sorted under the VR-DIS research pro-

Serving building product information with design knowledge servers

S. Fridqvist and J.P. van Leeuwen
Eindhoven University of Technology, Eindhoven, Netherlands

ABSTRACT: Building product information is a valuable resource for building design, but the number of dif-
ferent producers and products makes it hard for a single person to keep informed of all available products. A
solution to this problem would be computer-based product information repositories, from which designers
could fetch up-to-date information. The Design Knowledge Server (DesKs) approach has properties that make
it function as such a product information repository. Compared to other approaches, it provides enhanced
functionality that will benefit especially architects in early design phases. The paper introduces the main char-
acteristics of DesKs and describes the way design information is modelled in this approach. It focuses on how
a technology called Feature Type Recognition (FTR), which is part of this development, can be used to find
product information.

gramme of the Design Systems group at the TU/e
(de Vries et al, 2001).

DesKs servers are envisioned to create a network
where information is distributed and can be
searched. The FBM framework supports a layered
structure of information, allowing type definitions
residing in one node of the network to reference type
definitions in other nodes. This way, both new types
and specialisations of previously published ones can
be defined and published. This allows building
product information for specific products to be cre-
ated as specialisations of generic types that define
the general properties of the products.

It is our conclusion that a DesKs server could
function as the “building product information gate-
way” to serve designers with product information
that has been described by Augenbroe (1998).

The DesKs technology supports both modelling
of generic properties and searching for products that
carry them. It also provides a programming interface
to allow applications that handle IFC and PLIB data
to become parts of a DesKs server. This makes the
DesKs a plausible candidate for creating Augen-
broe’s building product information gateway.

3.1 Publishing product information using DesKs
Using the DesKs technology to publish product in-
formation has a number of advantages for product
suppliers. General advantages of online publications
apply, such as the ability to provide the most up-to-
date information the moment it is requested. There is
no delay in the process of publication and communi-
cation like there is with, for example, printed docu-
mentation. This ensures up-to-date information
about the product itself, but also offers the possibil-
ity to include accurate information about availabil-
ity, pricing, delivery times, logistics, conditions, etc.

In addition to these advantages, DesKs provide
the opportunity to have a direct interaction between
suppliers and designers. Clients connect to the sup-
plier and communicate design problems through
formal models. Suppliers can provide design solu-
tions that represent a product or a range of products.
The solutions can include information for the par-
ticular design case, such as alternative design details,
instructions for construction and assembly, case-
specific information concerning costs, delivery, etc.
The designer can use this information directly in his
design model, and communicate it with his project-
partners. The DesKs technology is generally based
on reference, thus the supplier data will remain
within the supplier’s responsibility.

4 THE FEATURE BASED MODELLING
FRAMEWORK

The following part is a brief explanation of some
important aspects of the feature based modelling
(FBM) framework; for an in-depth description, the
reader is directed to other accounts of the FBM
framework, in particular (van Leeuwen 1999).

The FBM framework supports design by allowing
the user to model both generic concepts and indi-
viduals. This makes the FBM framework a founda-
tion for the kind of flexible tool that has been seen as
necessary by many researchers, and which is also
exemplified by other systems such as EDM2 (East-
man & Jeng 1999), the BAS·CAAD system (Ekholm
& Fridqvist 1998) and the SOFA system (Galle
1994).

4.1 Property-oriented modelling
The FBM framework is a property-oriented ap-
proach to modelling design information (van Leeu-
wen et al 2001). Property-oriented information sys-
tems are characterised by their focus on the
properties of the things to be modelled, e.g. ‘fire re-
sistance’, ‘mass’, or ‘colour’. This distinguishes
these systems from class-oriented systems, which
base modelling on classes of things, such as ‘wall’,
‘window’, or ‘floor slab’. Property oriented systems,
like FBM, allow objects under design to be specified
incrementally, i.e. the designer can add specifica-
tions as they become known through the design
process, since partially defined models are allowed.

4.2 Complex features are defined through
components

In the FBM framework, generic concepts are mod-
elled through feature types, and particular individu-
als through feature instances. Thus, a model consists
of a collection of interrelated feature instances,
which refer to generic concepts modelled as feature
types.

Features that carry higher-level meaning are cre-
ated by combining lower-level ones in a structured
manner. Complex features combine other features,
both at the type level and at the instance level,
through components that connect the complex fea-
ture to other features. Components are named, and
can have one of three role types that define the rela-
tion between the higher-level feature and the lower
one, i.e. decomposition, specification or association.
Components thus define what roles the connected
features play in the context of the complex feature.

At the type level components additionally include
cardinality information, which defines the lower and
upper limits of the number of instances that, at the

instance level, should be related through one single
component.

4.3 Subtype-supertype hierarchies
Complex feature types may be arranged in subtype-
supertype hierarchies. A subtype inherits all compo-
nents of its supertype, but it may re-define them to
become more specific. Similarly, a subtype inherits
the constraint assignments of its supertype (see be-
low).

4.4 Constraints
Constraint feature types define constraints on a ge-
neric level. They include a list of typed parameters,
and an expression that defines the actual constraint.

Constraints serve two different but related func-
tions: at the type level, when used in a complex fea-
ture type definition, they form part of the semantic
content of the complex feature type. At the instance
level, constraints are also used to evaluate the
model; the result is either fulfilled or not fulfilled.

Constraints can be used to model a thing’s struc-
ture at the type level. The ability to define the struc-
ture is necessary to model functional properties,
since these are part of the structure. The structure of
a thing can be parted in the internal structure and the
external structure, where the internal structure is the
complex of relations among the parts of the thing,
and the external structure is the complex of relations
between the thing and its environment (Ekholm &
Fridqvist 1996).

To highlight how constraints are used to define
the structure of things, we will use the following ex-
ample, illustrated in Figure 1. In this case, we want
to define a type that would be instantiated as to the
right of the figure, having two parts where part A has
an a-relation to part B. The corresponding type is il-
lustrated to the left.

Whole

Part
a

A B

Whole

Part A Part B
a

A B

Figure 1 Modelling structure in FBM; type level to the left and
instance level to the right. (FBM graphical notation.)

The reader should note that the feature type Part
to the left only defines that the component a should
be filled by some instance of type Part, not what
particular instance. Apparently, just adding the two
components A and B to the type Whole is not suffi-
cient to ensure the desired outcome. The necessary
additional piece of information can be contributed

by adding a constraint to feature type Whole, to con-
strain the sub-component a of component A to be
identical with component B.

Apparently, using constraints to define structure
requires constraint expressions to be able to access
the interiors of components. Support for this has
been included in the implementation.

5 FEATURE TYPE RECOGNITION

Feature Type Recognition (FTR) is a technique
made possible by the FBM framework. Through
FBM, a data item that represents an individual can
be recognized as an instance of a type, by comparing
the components of the individual with those of the
type.

While a feature instance is created based on a
specific feature type, to provide the needed flexibil-
ity of modelling the user is free to change the com-
ponents and to add new ones. Thus, after a while a
feature instance may no longer be a true instance of
the original type. As a result, the higher-level mean-
ing of the instance may have become hidden, i.e. it is
not explicit, but only implicit in terms of the combi-
nation of its lower-level concepts as defined by the
components. To make the meaning explicit, a
higher-level concept needs to be found that repre-
sents the actual meaning. This is achieved through
feature type recognition (FTR).

The FTR function can be initiated either by the
(human) user, or by some application. For the user,
FTR can clarify the meaning or interpretation of a
model that has undergone many changes, as said
above. It can also suggest further development of the
design by showing various ways to make a general
model more specific, or vice-versa. This functional-
ity is utilised in the application part of the research
project that runs in 2002.

For applications, FTR can support analysis of
models by interpreting model features according to
type libraries defined for the purpose of analysis,
and thus making the model accessible to the analysis
software. This functionality might also be used to
translate models between different modelling sche-
mas, to support data exchange.

5.1 How FTR is implemented
FTR finds the types that best cover the present status
of a feature instance by comparing the components
of the instance with the components of the types.
The FTR algorithm has two phases. The first is to
find applicable candidates, i.e. feature types that
might be an appropriate type for the instance. The
second phase is to select one or several of the candi-
dates.

To find the candidates, the procedure illustrated
in Figure 2 is followed:
1 Inspect the instance’s all components.
2 Collect the types of all component fillers (2.1) as

well as the fillers’ supertypes (2.2).
3 For each type t from step 2, collect the types

where t is a component. The result is the list of
candidate types.

4 For each of the types from 3, add the subtypes to
the candidate list.
A component will have one or more fillers, i.e.

feature instances that represent a part or a property
of the main feature instance. To be a candidate, a
type must primarily have a component in common
with the instance, i.e. the components should have
identical names and role types. Secondly, the types
of the fillers of the components must match. If both
of these criteria match, the type is added to the can-
didate list.

The second criterion might introduce an element
of recursion, since the correct types of the instance’s
fillers need to be known before the evaluation can be
made. Currently, however, no typing of the fillers is
done. The main reason for this is that currently the
user needs to make the final selection of the type,
and it would be too confusing to repetitively have to
select the type of subcomponents. To be efficient,
recursion needs automatic type selection.

To aid the user, the candidate list is ordered ac-
cording to applicability. The ordering is based on
several criteria, such as:

Instance for
recognition

Instance's
type

 Instances

Supertypes

Types

Subtypes

Component instance

SupertypeSupertype

Component

Inherited component

recognizedType
instantiatedType

4

1

2.1

2.2

3

FTR candidates

Figure 2 The algorithm for finding feature type candidates.
Legend: Rectangles represent feature types and instances. Thin
straight arrows represent relations defined by FBM. Thick ar-
rows represent how the FTR process traverses the feature data.

1. How well does the candidate’s set of compo-
nents match the actual components of the instance?

2. How well do the candidate’s components
match the instance’s component fillers?

For criterion 1, there might be an exact match of
components between the candidate type and the in-
stance, or the type may have more or less compo-
nents than the instance. In case a type has compo-
nents that the instance lacks, the type represents a
specialisation of the instance. Choosing such a type
implies adding the missing components to the in-
stance, and thus adds information to the model.

The problem of how to automatically select types
is studied in the second year of the research project
(2002), and the subject is not ready for conclusions
at the time of writing. Nevertheless, it can be said
that the outcome of an automatic FTR process de-
pends on what weights are given to the different
matching criteria, and the problem consists of de-
termining what impact different weights will have.
Plausibly, different settings would be preferable for
different purposes. What is already clear is that an
automatic FTR process should not add information
to a model. Thus, an automatic process will not con-
sider candidates that by the manual selection might
be presented to the user as suggestions to further
specify the design model.

6 STANDARDS FOR PRODUCT
INFORMATION

To allow product information searches, standards
need to be developed for the purpose. We have stud-
ied two standards that are relevant in the context of
building product information.

6.1 PLIB – ISO 13584
The ISO 13584 standard, called PLIB, is a standard
for parts libraries, i.e. catalogues that organise in-
formation about standard components. This section
makes a brief presentation of the PLIB standard. The
information on PLIB was obtained from (Pierra
1997) and (Pierra et al 2000).

A PLIB parts library consists of two parts:
− a classification tree where component families

and technical properties are identified and con-
nected;

− a set of templates that describe successively each
component family and each technical property.
Thus, the technical properties are closely con-

nected to the component families, and vice versa.
The close connection seems to make it difficult to
define generic properties that are common for many
otherwise dissimilar products. The following quota-
tion confirms this: “Unfortunately, the world is not a
tree, and it is impossible to associate properties to
the class hierarchy in such a way that every common

property is only defined once, at some level of a hi-
erarchy, and that it applies to all the sub-classes. The
class where a property is defined being part of the
identification of a property, two properties defined
in two different classes would be two different prop-
erties.” (Pierra 1997)

However, the PLIB standard is a generic frame-
work, where different professions will define their
own product hierarchies. It would thus in principle
be possible to create several separate product librar-
ies to cover different functional aspects for one
range of products. Unfortunately, since there is no
mechanism to make the correspondences between
such libraries explicit, this approach would be quite
obscure and difficult to maintain.

6.2 Industry Foundation Classes - IFC
The main current effort to define a building product
modelling schema is the Industry Foundation
Classes, IFC. The rationale for developing the IFC
has been to provide “a basis for project information
sharing in the building industry” (IAI website).
Thus, the IFC is primarily a vehicle for communica-
tion, not a system on which to build design software.

IFC 2x is semantically a single hierarchy of
classes that model objects recognised in buildings.
These classes generally represent building compo-
nents as viewed at the time of construction, i.e. when
the functional design is complete. However, the
classes are quite generic, and may not be sufficient
to describe the differences of products well enough
to support product libraries. In addition, IFC 2x is
not designed to offer extendibility, e.g. for new
products or construction methods.

6.3 Conclusions
Both PLIB and IFC 2x are based on single hierar-
chies of classes, and none implements modelling ge-
neric properties and functions. This makes it hard to
include this kind of information to product informa-
tion, and consequently to search for products based
on generic properties or functions.

This, however, would not be a problem for the in-
tended use of PLIB, since an engineer would very
well know that he needs, e.g., a screw. His problem
is rather to find the screw that best fits his purposes.
DesKs addresses a different problem, where the so-
lution of a design problem is less well known.
Where PLIB assists in finding a specific product
among a great number of nearly similar ones, the
DesKs approach excels in finding products with a
set of generic properties, i.e. properties shared by
many different categories of things.

The DesKs core can be used by different applica-
tions. Thus it is feasible to create an interface for the

PLIB standard that would allow DesKs users to
search PLIBs on a more generic level. Similarly, an
interface could be created for IFC 2x. Such inter-
faces would be accompanied by collections of fea-
ture types that semantically relate PLIB component
families or IFC classes to each other and to other
feature types. Such collections would also contain
feature types to make the correspondences between
the different classes explicit.

7 MODELLING PRODUCTS TO SUPPORT
PRODUCT FINDING

To serve as an example for evaluation and demon-
stration, a small product database will be imple-
mented in the DesKs application. Since this work
belongs to the second phase of the project, conclu-
sive results are not expected until later this year
(2002). Nevertheless, some requirements that prod-
uct finding puts on FTR are briefly presented here to
highlight some of the complexities of implementing
FTR in the context of feature based modelling. In
particular, to successfully implement FTR does not
only involve writing the FTR program code, but also
to study how to use the FBM framework for model-
ling.

The practicability of the FBM framework, and
thus of the DesKs technology, depends on well-
defined systems of feature types to represent classes
of things and properties that are useful for the differ-
ent actors in the building process. Particularly to
support product finding, the functional properties of
a product need to be modelled in addition to other
properties such as shape, material, colour etc. To de-
fine these feature types, however, is a task for inter-
national and professional organisations.

The FBM framework supports the “rich product
semantics that provide complete product models
with embedded links to relevant codes and regula-
tions, specifications, geometry, assembly instruc-
tions, etc.” that will be the foundation of electronic
product catalogues (Jain and Augenbroe 2000). Such
catalogues will, according to these authors, “offer
added capabilities such as: dynamic updates; sophis-
ticated search capabilities based on performance cri-
teria, availability; multiple information sources; cus-
tomisation based on user/firm preference. ”

7.1 Product finding for architectural design
Architectural design differs qualitatively from much
engineering design in one aspect, namely the impor-
tance of human values. While many engineering
tasks can be rather precisely defined in terms of
technical requirements, architectural tasks involve
people and people’s emotions to a high degree.

Since the latter cannot be as precisely defined as en-
gineering requirements, the architect needs to have
the possibility to be ambiguous during much of the
design process. The ambiguousness can be under-
stood as focusing on only one or a few of the proper-
ties that a component may have, for instance only
the visual enclosing properties of a wall. For a prod-
uct finding system to be fully useful to architectural
designers, it needs to address this problem and sup-
port product finding for generic properties.

Research on design shows that designers evolve
the design solution in concert with their understand-
ing of the design problem (Gedenryd 1998). In other
words, they actually begin by creating provisional
solutions that they subsequently analyse and gradu-
ally refine. The ability to create provisional design
solutions relies on the designer’s knowledge of
available options. The better his knowledge, the
more likely it is that he makes good choices early
on. A suitable product information catalogue could
help the designer to learn about his options. Conclu-
sively, the catalogue needs to be based on generic
properties also for this purpose.

Because they are class-centred, neither PLIB nor
IFC 2x are well suited to fill the roles we have
drawn in these paragraphs. Instead, a property-
oriented approach, such as the FBM framework, is
needed. By allowing searching for products by ge-
neric properties, the DesKs technology could pro-
vide a powerful tool for designers.

8 CONCLUSIONS

To have knowledge of available components is im-
portant for designers to make good choices at early
phases of design. Computer-based systems to assist
finding product information might leverage the de-
signer’s abilities in this respect. However, to be use-
ful in early stages these systems need to be search-
able by generic properties, and not only by classes of
products.

Standardisation efforts, such as PLIB and IFC 2x,
are based on classes of products, and do not readily
support searches on generic properties. Thus, these
approaches are aimed towards searches at later de-
sign stages, but not directly useful for the early
stages the DesKs approach addresses.

REFERENCES

Augenbroe, G. (1998) Building Product Information Technol-
ogy, Executive white paper, Construction Research Center,
Georgia Institute of Technology, 1998.

Coyne, R. , Lee, J., Duncan, D., and Ofluoglu, S. (2001) Ap-
plying web-based product libraries. Automation in Con-
struction 10 (2001) pp. 549-559.

Eastman, C. and Jeng, T-S. (1999) A database supporting evo-
lutionary product modelling development for design, in:
Automation in Construction 8 (1999) pp. 305-323.

Ekholm, A. and Fridqvist, S. (1996) Basic Object Structure for
Computer Aided Modelling in Building Design in: Turk, Ž.
(ed) Proceedings of the CIB-W78 International Conference
“Construction on the Information Highway”, University of
Ljubljana, Slovenia, pp 197-206.

Ekholm, A. and Fridqvist, S. (1998) A Dynamic Information
System for Design Applied to the Construction Context in:
Björk, B.C. and Jägbeck, A. (eds) Proceedings of the CIB
W78 workshop “The Life-cycle of Construction IT”, Royal
Institute of Technology, Stockholm, 1998, pp.219-232.

Fridqvist, S. (2000) Property-Oriented Information Systems for
Design, prototypes for the BAS·CAAD System, PhD thesis,
Lund University, Sweden.

Gedenryd, H. (1998) How designers work - making sense of
authentic cognitive activities. Dissertation. Lund University
Cognitive Studies 75, Lund University, Lund.

Galle, P. (1994) Specifying objects as functions of attributes:
Towards a data model for design. Invited paper for the 7th
international conference on systems research, informatics
and cybernetics, Aug 15-21, 1994, Baden-Baden, German

IFC 2x website:
 http://www.iai-ev.de/spezifikation/Ifc2x/index.htm

IAI website: http://iaiweb.lbl.gov/.
Jain, S. and Augenbroe, G. (2000) The Role of Electronic

Product Data Catalogues in Design Management, presented
at the CIB W96 Conference “Design Management in the
Architectural and Engineering Office”, May 19-20, 2000,
Atlanta, Georgia, USA.

van Leeuwen, J.P. (1999). Modelling Architectural Design In-
formation by Features, an approach to dynamic product
modelling for application in architectural design, PhD the-
sis, Eindhoven University of Technology, the Netherlands.

van Leeuwen, J.P., Hendricx, A., and Fridqvist, S. (2001) To-
wards Dynamic Information Modelling in Architectural
Design. In: Proceedings of the CIB-W78 International Con-
ference “IT in Construction in Africa” 2001. CSIR, Divi-
sion of Building and Construction Technology, pp 19.1-14.

van Leeuwen, J.P. and Fridqvist, S. (2002) On the Management
of Sharing Design Knowledge, in: Proceedings of the CIB
W78 conference “Distributing Knowledge in Building”,
June 12-14 2002, Aarhus, Denmark.

Pierra, G. (1997) Intelligent electronic component catalogues
for engineering and manufacturing In: Proc. of the Internat.
Symp. on Global Engineering Networking GEN’97, Ant-
werp, Belgium, April 23-24.

Pierra, G. , Potier, J.C, and Sardet, E. (2000) From digital li-
braries to electronic catalogues for engineering and manu-
facturing. Downloaded from: http://www.plib.ensma.fr/
plib/english/publications/publication.asp.

de Vries, B, Achten, H, Coomans, M.K.D, Dijkstra, J,
Fridqvist, S, Jessurun, J, van Leeuwen, J.P, Orzechowski,
M, Saarloos, D, Segers, N, Tan, A. (2001). The VR-DIS
Research Programme, Design Systems group. In: Proceed-
ings of the Computer Aided Architectural Design Futures
Conference 2001, 8-11 July 2001, Eindhoven University of
Technology, The Netherlands, pp 795-808.

