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1 INTRODUCTION  

To find applicable components to become parts of a 
design is one of the main tasks of a designer (Coyne 
et al. 2001). This is true for all kinds of design, for 
mechanical engineers as well as for architects. Alas, 
the multitude of producers making similar products 
makes it an impossible task for any individual to 
maintain a good overview of it all. This has pro-
moted the idea of creating computer-based reposito-
ries for component information to assist designers to 
find the products they need. 

Building design generally involves many persons 
that are geographically dispersed. To enable all ac-
tors to work within one environment would greatly 
improve collaboration. The design knowledge server 
(DesKs) technology is a means to achieve such a 
common environment. Additionally, its basic func-
tionality allows a DesKs server to act as a product 
information repository. 

2 BUILDING PRODUCT INFORMATION 

Building products are manufactured to become parts 
of buildings and are offered for sale on a general 
market, i.e. they are mostly not designed and manu-
factured only for a specific building. Building prod-
uct information is published by the manufacturers to 
advertise the products, and to guide building design-
ers in their choice of components for their design. 

Traditionally, building product information has 
been distributed as printed matter, featuring texts, 
pictures, and drawings. With many similar products 
from several vendors on the market, it is hard for the 
individual designer to have knowledge of them all. 
This has created a market for specialised ‘informa-
tion brokers’, who collect, organise and distribute 

building product information. However, even with 
the aid of brokers, designers have to study the 
printed information to learn what specific products 
may apply to the current design.  

With the advent of CAD as the dominant medium 
for describing building designs, many producers 
have started to supply information also in CAD for-
mats. This enables the designer to insert symbols or 
3D-representations of products into drawings and 
models of the building to be (Coyne et al. 2001). 
Additionally, the Internet has enabled a direct chan-
nel from building product manufacturers to design-
ers. However, brokers still have a mission to fill to 
organise the material, and the designer still must 
manually study the information to be able to find 
and select a product. This area would benefit from 
further computer assistance (Augenbroe, 1998). If 
product information were provided in a suitable 
format, computers could provide automated searches 
for products with the properties required for a de-
sign. 

3 DESIGN KNOWLEDGE SERVERS 

A design knowledge server, DesKs, is a networked 
server that manages and distributes design knowl-
edge, which is created and accessed using client ap-
plications. The main rationale for the system is to 
support collaborative design, but it will also serve 
other purposes such as creating repositories for pub-
lic design information. For an extended presentation 
of DesKs, see (van Leeuwen and Fridqvist 2002). 

DesKs are based on the Feature Based Modelling 
(FBM) framework, developed by Jos van Leeuwen 
at the Eindhoven University of Technology (TU/e) 
(van Leeuwen 1999). The DesKs as well as the FBM 
framework is sorted under the VR-DIS research pro-
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gramme of the Design Systems group at the TU/e 
(de Vries et al, 2001). 

DesKs servers are envisioned to create a network 
where information is distributed and can be 
searched. The FBM framework supports a layered 
structure of information, allowing type definitions 
residing in one node of the network to reference type 
definitions in other nodes. This way, both new types 
and specialisations of previously published ones can 
be defined and published. This allows building 
product information for specific products to be cre-
ated as specialisations of generic types that define 
the general properties of the products. 

It is our conclusion that a DesKs server could 
function as the “building product information gate-
way” to serve designers with product information 
that has been described by Augenbroe (1998). 

The DesKs technology supports both modelling 
of generic properties and searching for products that 
carry them. It also provides a programming interface 
to allow applications that handle IFC and PLIB data 
to become parts of a DesKs server. This makes the 
DesKs a plausible candidate for creating Augen-
broe’s building product information gateway.  

3.1 Publishing product information using DesKs 
Using the DesKs technology to publish product in-
formation has a number of advantages for product 
suppliers. General advantages of online publications 
apply, such as the ability to provide the most up-to-
date information the moment it is requested. There is 
no delay in the process of publication and communi-
cation like there is with, for example, printed docu-
mentation. This ensures up-to-date information 
about the product itself, but also offers the possibil-
ity to include accurate information about availabil-
ity, pricing, delivery times, logistics, conditions, etc. 

In addition to these advantages, DesKs provide 
the opportunity to have a direct interaction between 
suppliers and designers. Clients connect to the sup-
plier and communicate design problems through 
formal models. Suppliers can provide design solu-
tions that represent a product or a range of products. 
The solutions can include information for the par-
ticular design case, such as alternative design details, 
instructions for construction and assembly, case-
specific information concerning costs, delivery, etc. 
The designer can use this information directly in his 
design model, and communicate it with his project-
partners. The DesKs technology is generally based 
on reference, thus the supplier data will remain 
within the supplier’s responsibility. 

4 THE FEATURE BASED MODELLING 
FRAMEWORK 

The following part is a brief explanation of some 
important aspects of the feature based modelling 
(FBM) framework; for an in-depth description, the 
reader is directed to other accounts of the FBM 
framework, in particular (van Leeuwen 1999).  

The FBM framework supports design by allowing 
the user to model both generic concepts and indi-
viduals. This makes the FBM framework a founda-
tion for the kind of flexible tool that has been seen as 
necessary by many researchers, and which is also 
exemplified by other systems such as EDM2 (East-
man & Jeng 1999), the BAS·CAAD system (Ekholm 
& Fridqvist 1998) and the SOFA system (Galle 
1994). 

4.1 Property-oriented modelling 
The FBM framework is a property-oriented ap-
proach to modelling design information (van Leeu-
wen et al 2001). Property-oriented information sys-
tems are characterised by their focus on the 
properties of the things to be modelled, e.g. ‘fire re-
sistance’, ‘mass’, or ‘colour’. This distinguishes 
these systems from class-oriented systems, which 
base modelling on classes of things, such as ‘wall’, 
‘window’, or ‘floor slab’. Property oriented systems, 
like FBM, allow objects under design to be specified 
incrementally, i.e. the designer can add specifica-
tions as they become known through the design 
process, since partially defined models are allowed. 

4.2 Complex features are defined through 
components 

In the FBM framework, generic concepts are mod-
elled through feature types, and particular individu-
als through feature instances. Thus, a model consists 
of a collection of interrelated feature instances, 
which refer to generic concepts modelled as feature 
types. 

Features that carry higher-level meaning are cre-
ated by combining lower-level ones in a structured 
manner. Complex features combine other features, 
both at the type level and at the instance level, 
through components that connect the complex fea-
ture to other features. Components are named, and 
can have one of three role types that define the rela-
tion between the higher-level feature and the lower 
one, i.e. decomposition, specification or association. 
Components thus define what roles the connected 
features play in the context of the complex feature. 

At the type level components additionally include 
cardinality information, which defines the lower and 
upper limits of the number of instances that, at the 



instance level, should be related through one single 
component.  

4.3 Subtype-supertype hierarchies 
Complex feature types may be arranged in subtype-
supertype hierarchies. A subtype inherits all compo-
nents of its supertype, but it may re-define them to 
become more specific. Similarly, a subtype inherits 
the constraint assignments of its supertype (see be-
low). 

4.4 Constraints 
Constraint feature types define constraints on a ge-
neric level. They include a list of typed parameters, 
and an expression that defines the actual constraint.  

Constraints serve two different but related func-
tions: at the type level, when used in a complex fea-
ture type definition, they form part of the semantic 
content of the complex feature type. At the instance 
level, constraints are also used to evaluate the 
model; the result is either fulfilled or not fulfilled. 

Constraints can be used to model a thing’s struc-
ture at the type level. The ability to define the struc-
ture is necessary to model functional properties, 
since these are part of the structure. The structure of 
a thing can be parted in the internal structure and the 
external structure, where the internal structure is the 
complex of relations among the parts of the thing, 
and the external structure is the complex of relations 
between the thing and its environment (Ekholm & 
Fridqvist 1996).  

To highlight how constraints are used to define 
the structure of things, we will use the following ex-
ample, illustrated in Figure 1. In this case, we want 
to define a type that would be instantiated as to the 
right of the figure, having two parts where part A has 
an a-relation to part B. The corresponding type is il-
lustrated to the left. 
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Figure 1 Modelling structure in FBM; type level to the left and 
instance level to the right. (FBM graphical notation.) 

The reader should note that the feature type Part 
to the left only defines that the component a should 
be filled by some instance of type Part, not what 
particular instance. Apparently, just adding the two 
components A and B to the type Whole is not suffi-
cient to ensure the desired outcome. The necessary 
additional piece of information can be contributed 

by adding a constraint to feature type Whole, to con-
strain the sub-component a of component A to be 
identical with component B. 

Apparently, using constraints to define structure 
requires constraint expressions to be able to access 
the interiors of components. Support for this has 
been included in the implementation. 

5 FEATURE TYPE RECOGNITION 

Feature Type Recognition (FTR) is a technique 
made possible by the FBM framework. Through 
FBM, a data item that represents an individual can 
be recognized as an instance of a type, by comparing 
the components of the individual with those of the 
type.  

While a feature instance is created based on a 
specific feature type, to provide the needed flexibil-
ity of modelling the user is free to change the com-
ponents and to add new ones. Thus, after a while a 
feature instance may no longer be a true instance of 
the original type. As a result, the higher-level mean-
ing of the instance may have become hidden, i.e. it is 
not explicit, but only implicit in terms of the combi-
nation of its lower-level concepts as defined by the 
components. To make the meaning explicit, a 
higher-level concept needs to be found that repre-
sents the actual meaning. This is achieved through 
feature type recognition (FTR). 

The FTR function can be initiated either by the 
(human) user, or by some application. For the user, 
FTR can clarify the meaning or interpretation of a 
model that has undergone many changes, as said 
above. It can also suggest further development of the 
design by showing various ways to make a general 
model more specific, or vice-versa. This functional-
ity is utilised in the application part of the research 
project that runs in 2002. 

For applications, FTR can support analysis of 
models by interpreting model features according to 
type libraries defined for the purpose of analysis, 
and thus making the model accessible to the analysis 
software. This functionality might also be used to 
translate models between different modelling sche-
mas, to support data exchange. 

5.1 How FTR is implemented 
FTR finds the types that best cover the present status 
of a feature instance by comparing the components 
of the instance with the components of the types. 
The FTR algorithm has two phases. The first is to 
find applicable candidates, i.e. feature types that 
might be an appropriate type for the instance. The 
second phase is to select one or several of the candi-
dates. 



To find the candidates, the procedure illustrated 
in Figure 2 is followed: 
1 Inspect the instance’s all components. 
2 Collect the types of all component fillers (2.1) as 

well as the fillers’ supertypes (2.2). 
3 For each type t from step 2, collect the types 

where t is a component. The result is the list of 
candidate types. 

4 For each of the types from 3, add the subtypes to 
the candidate list. 
A component will have one or more fillers, i.e. 

feature instances that represent a part or a property 
of the main feature instance. To be a candidate, a 
type must primarily have a component in common 
with the instance, i.e. the components should have 
identical names and role types. Secondly, the types 
of the fillers of the components must match. If both 
of these criteria match, the type is added to the can-
didate list. 

The second criterion might introduce an element 
of recursion, since the correct types of the instance’s 
fillers need to be known before the evaluation can be 
made. Currently, however, no typing of the fillers is 
done. The main reason for this is that currently the 
user needs to make the final selection of the type, 
and it would be too confusing to repetitively have to 
select the type of subcomponents. To be efficient, 
recursion needs automatic type selection. 

To aid the user, the candidate list is ordered ac-
cording to applicability. The ordering is based on 
several criteria, such as: 
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Figure 2 The algorithm for finding feature type candidates. 
Legend: Rectangles represent feature types and instances. Thin 
straight arrows represent relations defined by FBM. Thick ar-
rows represent how the FTR process traverses the feature data. 

1. How well does the candidate’s set of compo-
nents match the actual components of the instance? 

2. How well do the candidate’s components 
match the instance’s component fillers? 

For criterion 1, there might be an exact match of 
components between the candidate type and the in-
stance, or the type may have more or less compo-
nents than the instance. In case a type has compo-
nents that the instance lacks, the type represents a 
specialisation of the instance. Choosing such a type 
implies adding the missing components to the in-
stance, and thus adds information to the model. 

The problem of how to automatically select types 
is studied in the second year of the research project 
(2002), and the subject is not ready for conclusions 
at the time of writing. Nevertheless, it can be said 
that the outcome of an automatic FTR process de-
pends on what weights are given to the different 
matching criteria, and the problem consists of de-
termining what impact different weights will have. 
Plausibly, different settings would be preferable for 
different purposes. What is already clear is that an 
automatic FTR process should not add information 
to a model. Thus, an automatic process will not con-
sider candidates that by the manual selection might 
be presented to the user as suggestions to further 
specify the design model. 

6 STANDARDS FOR PRODUCT 
INFORMATION 

To allow product information searches, standards 
need to be developed for the purpose. We have stud-
ied two standards that are relevant in the context of 
building product information. 

6.1 PLIB – ISO 13584 
The ISO 13584 standard, called PLIB, is a standard 
for parts libraries, i.e. catalogues that organise in-
formation about standard components. This section 
makes a brief presentation of the PLIB standard. The 
information on PLIB was obtained from (Pierra 
1997) and (Pierra et al 2000). 

A PLIB parts library consists of two parts:  
− a classification tree where component families 

and technical properties are identified and con-
nected; 

− a set of templates that describe successively each 
component family and each technical property.  
Thus, the technical properties are closely con-

nected to the component families, and vice versa. 
The close connection seems to make it difficult to 
define generic properties that are common for many 
otherwise dissimilar products. The following quota-
tion confirms this: “Unfortunately, the world is not a 
tree, and it is impossible to associate properties to 
the class hierarchy in such a way that every common 



property is only defined once, at some level of a hi-
erarchy, and that it applies to all the sub-classes. The 
class where a property is defined being part of the 
identification of a property, two properties defined 
in two different classes would be two different prop-
erties.” (Pierra 1997) 

However, the PLIB standard is a generic frame-
work, where different professions will define their 
own product hierarchies. It would thus in principle 
be possible to create several separate product librar-
ies to cover different functional aspects for one 
range of products. Unfortunately, since there is no 
mechanism to make the correspondences between 
such libraries explicit, this approach would be quite 
obscure and difficult to maintain.  

6.2 Industry Foundation Classes - IFC 
The main current effort to define a building product 
modelling schema is the Industry Foundation 
Classes, IFC. The rationale for developing the IFC 
has been to provide “a basis for project information 
sharing in the building industry” (IAI website). 
Thus, the IFC is primarily a vehicle for communica-
tion, not a system on which to build design software.  

IFC 2x is semantically a single hierarchy of 
classes that model objects recognised in buildings. 
These classes generally represent building compo-
nents as viewed at the time of construction, i.e. when 
the functional design is complete. However, the 
classes are quite generic, and may not be sufficient 
to describe the differences of products well enough 
to support product libraries. In addition, IFC 2x is 
not designed to offer extendibility, e.g. for new 
products or construction methods. 

6.3 Conclusions 
Both PLIB and IFC 2x are based on single hierar-
chies of classes, and none implements modelling ge-
neric properties and functions. This makes it hard to 
include this kind of information to product informa-
tion, and consequently to search for products based 
on generic properties or functions. 

This, however, would not be a problem for the in-
tended use of PLIB, since an engineer would very 
well know that he needs, e.g., a screw. His problem 
is rather to find the screw that best fits his purposes. 
DesKs addresses a different problem, where the so-
lution of a design problem is less well known. 
Where PLIB assists in finding a specific product 
among a great number of nearly similar ones, the 
DesKs approach excels in finding products with a 
set of generic properties, i.e. properties shared by 
many different categories of things. 

The DesKs core can be used by different applica-
tions. Thus it is feasible to create an interface for the 

PLIB standard that would allow DesKs users to 
search PLIBs on a more generic level. Similarly, an 
interface could be created for IFC 2x. Such inter-
faces would be accompanied by collections of fea-
ture types that semantically relate PLIB component 
families or IFC classes to each other and to other 
feature types. Such collections would also contain 
feature types to make the correspondences between 
the different classes explicit. 

7 MODELLING PRODUCTS TO SUPPORT 
PRODUCT FINDING 

To serve as an example for evaluation and demon-
stration, a small product database will be imple-
mented in the DesKs application. Since this work 
belongs to the second phase of the project, conclu-
sive results are not expected until later this year 
(2002). Nevertheless, some requirements that prod-
uct finding puts on FTR are briefly presented here to 
highlight some of the complexities of implementing 
FTR in the context of feature based modelling. In 
particular, to successfully implement FTR does not 
only involve writing the FTR program code, but also 
to study how to use the FBM framework for model-
ling. 

The practicability of the FBM framework, and 
thus of the DesKs technology, depends on well-
defined systems of feature types to represent classes 
of things and properties that are useful for the differ-
ent actors in the building process. Particularly to 
support product finding, the functional properties of 
a product need to be modelled in addition to other 
properties such as shape, material, colour etc. To de-
fine these feature types, however, is a task for inter-
national and professional organisations. 

The FBM framework supports the “rich product 
semantics that provide complete product models 
with embedded links to relevant codes and regula-
tions, specifications, geometry, assembly instruc-
tions, etc.” that will be the foundation of electronic 
product catalogues (Jain and Augenbroe 2000). Such 
catalogues will, according to these authors, “offer 
added capabilities such as: dynamic updates; sophis-
ticated search capabilities based on performance cri-
teria, availability; multiple information sources; cus-
tomisation based on user/firm preference. ” 

7.1 Product finding for architectural design 
Architectural design differs qualitatively from much 
engineering design in one aspect, namely the impor-
tance of human values. While many engineering 
tasks can be rather precisely defined in terms of 
technical requirements, architectural tasks involve 
people and people’s emotions to a high degree. 



Since the latter cannot be as precisely defined as en-
gineering requirements, the architect needs to have 
the possibility to be ambiguous during much of the 
design process. The ambiguousness can be under-
stood as focusing on only one or a few of the proper-
ties that a component may have, for instance only 
the visual enclosing properties of a wall. For a prod-
uct finding system to be fully useful to architectural 
designers, it needs to address this problem and sup-
port product finding for generic properties. 

Research on design shows that designers evolve 
the design solution in concert with their understand-
ing of the design problem (Gedenryd 1998). In other 
words, they actually begin by creating provisional 
solutions that they subsequently analyse and gradu-
ally refine. The ability to create provisional design 
solutions relies on the designer’s knowledge of 
available options. The better his knowledge, the 
more likely it is that he makes good choices early 
on. A suitable product information catalogue could 
help the designer to learn about his options. Conclu-
sively, the catalogue needs to be based on generic 
properties also for this purpose. 

Because they are class-centred, neither PLIB nor 
IFC 2x are well suited to fill the roles we have 
drawn in these paragraphs. Instead, a property-
oriented approach, such as the FBM framework, is 
needed. By allowing searching for products by ge-
neric properties, the DesKs technology could pro-
vide a powerful tool for designers. 

8 CONCLUSIONS 

To have knowledge of available components is im-
portant for designers to make good choices at early 
phases of design. Computer-based systems to assist 
finding product information might leverage the de-
signer’s abilities in this respect. However, to be use-
ful in early stages these systems need to be search-
able by generic properties, and not only by classes of 
products. 

Standardisation efforts, such as PLIB and IFC 2x, 
are based on classes of products, and do not readily 
support searches on generic properties. Thus, these 
approaches are aimed towards searches at later de-
sign stages, but not directly useful for the early 
stages the DesKs approach addresses. 
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