

Published as: van Leeuwen, J.P. (2003) “Computer Support for Collaborative Work in the Construction Industry” In: Cha, Gonçalves and Steiger-Garção, Proceed-
ings of the International Conference on Concurrent Engineering, Madeira, Portugal, July 26 – 30, 2003, Balkema Publishers, pp. 599-606.

1 COLLABORATIVE DESIGN

Construction projects typically are projects in which
a large number of participants have to work together
on the design and production of a complex product
that is one-of-a-kind. Many of these participants do
not work together on a regular basis; teams in con-
struction projects are organised on a project-basis.
Yet, collaboration in the design process of such pro-
jects is generally regarded to be the critical factor of
success. Collaborative design is a term that denotes
more than just co-operation. In co-operation partici-
pants work together to achieve mutual benefits but
without having a common goal. They will retain
their own resources, sharing only the minimum re-
quired for the co-operation. In collaboration how-
ever, the participants are committed to a common
mission and are willing to share the knowledge that
is necessary to fulfil that mission (Kvan 2000, Kvan
& Candy 2000).

1.1 State-of-the-art in CSCW
Current practice of computer support for collabora-
tive work (CSCW) in the construction industry
mainly utilises tools such as centralised project da-
tabases, systems for workflow management (WFM)
(Augenbroe & Lockley 1999, Eastman 1996, Turk
2000), and electronic document management (EDM)
applied in local or wide area network environments.

Although beneficial to the industry, this kind of sup-
port has important limitations. Centralisation of pro-
ject data aims to bring together all data that concerns
a project. However, the boundary between project-
related data and project-independent data is not
clearly defined. Hence, centralised databases are
never complete. More importantly, centralised pro-
ject data becomes isolated from business processes
that are not centralised.
Tools for workflow and document management are
generally based on documents as organising entities.
Although documents may be a good means for hu-
man beings to communicate, they are not a logical
means to organise and store information. Consis-
tency of information is often compromised by the
redundancy that occurs when multiple documents
describe the same artefact.

Research and development of product modelling
technology involves the implementation of object-
oriented approaches for the description of products
throughout their life cycle (Eastman 1999a, Augen-
broe 1995). The general methodology applied in
product model development is to predefine schemata
of object classes that represent the common ground
for a particular domain. International standards of
schemata are being defined for many disciplines, in-
cluding various domains within the building and
construction industry (ISO-10303 2000, Kiviniemi
1999, Woestenenk 2000, Böhms & Tolman 2001,
Tolman et al. 2001). Using the schemata, designs

Computer Support for Collaborative Work in the Construction Industry

J.P. van Leeuwen
Eindhoven University of Technology, The Netherlands
Department of Architecture, Building, and Planning
Design Systems group
www.ds.arch.tue.nl

ABSTRACT: Collaborative work is an essential ingredient for success in the construction industry. With the
advancements of capabilities of information technologies and communication infrastructures, the effective
utilisation of these technologies has become very important and strongly affects business processes that have
long followed traditional paths. In this paper we describe the main characteristics of the concept-modelling
framework that is developed in the DesKs project on Design Knowledge services. Concept modelling gives
end-users access to the schema of design models and provides a high level of flexibility for modelling. To
support collaborative work, it provides remote data access and allows users to share resources that, instead of
being exchanged or stored centrally, remain active at their source in tight relation with business processes.
The main technical aspects of the concept-modelling framework are discussed. Object version control and
timeline management of revisions of objects are used to increase the integrity between objects that are ac-
cessed and edited by multiple users across a network.

can be described by populating object-models with
properties and relationships that are defined in the
object classes. Communication takes place either by
exchanging these models as documents or by placing
them in centralised databases.

1.2 Identified problems
The notion of standardising object classes for mod-
elling designs is currently based on the assumption
that a satisfying classification of high-level objects
can be agreed upon by all actors within the construc-
tion industry. Product modelling developments for
this industry manifest the following problems in re-
lation with collaborative design:

1 Inadequate standards. Object classes are gener-

ally targeted at production stages. This renders
the schemata unacceptable for usage in early de-
sign stages, because the concepts used in early
stages differ from those in later stages. Using the
more final concepts in early design would imply
or enforce many decisions that designers do not
want to take in the early stages. Similarly, the
production-centred classes are not particularly
suitable for the maintenance phase.

2 Inaccessible schemata. The schemata are often
rigid, predefined, and not accessible for changes
by end users. Again, this makes the schemata
hard to use in the early stages of design, when de-
signers have a need to express the particularities
of the design using concepts that are often not
standard.

3 Inflexible standards. Standardisation concentrates
on the definition of classes for real-world objects
with all their properties and interrelationships.
Typically, the schemata contain classes for dif-
ferent kinds of walls, floor slabs, windows, doors,
heating components, and so forth. This enforces a
classification of products that does not necessar-
ily serve the needs of the supply chain, for exam-
ple, when new products are developed or when
multiple functions are combined into single prod-
ucts.

4 Exchange rather than sharing. Exchanging docu-
ments or using centralised project databases for
the communication separates data from its source
and isolates it from the business processes. This
leads to redundancy and potentially to inconsis-
tency and outdated data. In any case, it does not
contribute satisfactorily to a tighter integration of
business processes from partners in a collabora-
tion project.

5 No design support integration. The problems
identified above render product modelling an in-
effective technology for design support in the
construction industry. As a result, many R&D ef-
forts that aim to support specific design tasks,
such as case-based reasoning, simulation, and

evaluation systems, cannot make use of the rich-
ness of integrated information that could poten-
tially be delivered by this kind of technology.
This seriously obstructs the path for integration of
design support systems with computer support for
collaborative work.

2 CONCEPT MODELLING

Concept modelling is a technology that provides:

 User access to the definition of schemata;
 Property-oriented modelling;
 A distributed object model for sharing rather

than exchanging information.

Concept modelling is a dynamic form of product
modelling that was initially described in (van Leeu-
wen 1999). Concept modelling supports designers
by giving them access to the schema, the conceptual
level of the product model. This allows designers to
describe design concepts in a formal manner by de-
fining extensions to the schema. Such design con-
cepts may concern real-worlds objects as well as
more abstract notions such as functions or proper-
ties. The Concepts defined in the schema can be
used to instantiate Individuals that represent infor-
mation concerning a particular design. The concept-
modelling approach does not distinguish between
objects and properties; both are defined as concepts
with relationships to other concepts.

In principle this is an object-oriented approach,
but there are two important aspects that distinguish
it. Firstly, relationships can be added to an Individ-
ual, disregarding the definition of its Concept, to
make it represent a specific design case. Secondly,
the relationship between an Individual and its Con-
cept is strongly typed but dynamic, meaning that the
relationship can be modified. Such ‘change of con-
cept’ could be triggered, for example, by a search
algorithm that has found a better match for the par-
ticular Individual’s properties. Concept modelling is
designed to provide flexibility to end-users, such
that they can determine what concepts to use in
modelling and how to deal with non-typical situa-
tions in the model (van Leeuwen & Fridqvist
2002a).

Research in the Design Systems group at Eindho-
ven University of Technology has resulted in the de-
velopment of a technological framework for concept
modelling. The work has been implemented in the
form of an application-programming interface (API)
(van Leeuwen and Fridqvist 2002b). Prototype test-
ing of the API has successfully demonstrated the fol-
lowing functionality:

 Object data management for concept modelling.

The API makes available a core object model

that can be used to describe both design concepts
and individual designs. Data is organised using
namespace functionality similar to that in XML.

 Object-based version control and timeline man-
agement. The API implements version control
and maintains a timeline for each object (con-
cepts and individuals). This serves multiple pur-
poses, including improved consistency and reli-
able multi-user access.

 User management and authentication. The API
is prepared for multi-user environments and pro-
vides functionality for ownership and role-
assignment per object.

Current research investigates the rationale and im-
plementation of:

 Concept recognition. This is a kind of pattern-

matching approach that enables users to find
concepts that suit a particular network of indi-
viduals. An example application of this technol-
ogy is to search for products whose concept de-
scription matches the required properties
specified by a designer.

 Remote object sharing. The core model transpar-
ently deals with remote objects in a network of
systems that are based on the API. This imple-
mentation makes use of the standard HTTP and
SOAP protocols.

2.1 Related research
Concept modelling has been developed as a theory
and later implemented in a framework over the past
several years (van Leeuwen et al. 1996, van Leeu-
wen & Wagter 1997, van Leeuwen 1999, van Leeu-
wen et al. 2001). It was inspired by the technology
of Feature modelling and how this technology is
used in conceptual design stages; examples are the
work by (Shah & Mäntylä 1995) and by (Bronsvoort
& Jansen 1993, 1994, Holland et al. 1995).

Internationally, the paradigms of schema evolu-
tion and model flexibility have been recognised as
essential innovations, answering to restrictions that
standardisation efforts fail to address. Similar re-
search has been conducted at UCLA and later at
Georgia Institute of Technology on evolution of
schemata (Eastman 1999b, Eastman and Jeng 1999);
at Lund University of Technology on property-
oriented modelling (Ekholm 2002); and at Deakin
University on design knowledge management (Datta
2002).

Parallel to this work, XML has emerged as a
technology that addresses the same issues of exten-
sibility and flexibility in modelling and communicat-
ing information (W3C-XML 2000). Hence it is fruit-
fully utilised in the concept-modelling
developments. In a simplified view, the concept-

modelling paradigm could be compared to an XML
Schema that specifies a limited set of attributes to
elements, which enables us to provide certain rea-
soning mechanisms that support the interpretation of
the information.

3 DISTRIBUTED OBJECT MANAGEMENT

Two aspects of the current state of the implementa-
tion of the Concept Modelling Framework are dis-
cussed in this section. Both pertain to the manage-
ment of distributed objects in a network of design
and engineering information.

3.1 Object-based access control
Controlled and authenticated access to shared infor-
mation resources is a prerequisite for computer sup-
ported collaborative design. This involves defining
various levels of access, in order to control if users
are authorised to perform the requested operations
on information. In the concept-modelling frame-
work, access-levels are used to govern reading,
copying, using, referring to, and editing information.
Editing is controlled by a checkout-and-commit
mechanism that works on an object-basis. Users
have to check out an object, marking it as being un-
der revision, before they can make changes to it.
Once the changes are made, the object is committed
back to the source and stored as a new version or re-
vision (see section 3.2). The checkout mechanism
can be applied to function automatically or manually
in software applications based on the framework.
This is related to three modes of editing that are dis-
tinguished:

 Instantaneous editing is required when changes

made by one user should instantly be visible to
other users. This mode of working is applied, for
example, in virtual workspaces when users col-
laborate synchronously on a design and need to
see and communicate about each other’s modifi-
cations, such as dragging an object, in real time.
During such a drag-operation, the changes to the
coordinates are instantly made available to all
users.

 Intermittent editing is sufficient when users do
not need to have instant updates of modifications
in synchronous collaboration sessions. The
changes are made available only when the user
has committed them.

 Off-line editing is relevant when network facili-
ties are not permanently available. Objects re-
main checked out for a longer period and
changes are committed only the next time a user
is online.

The implementation of the concept-modelling
framework uses remote data access and ensures that
multiple accesses to an object actually address one
single object.

3.2 Object-based version management
The concept-modelling approach structures and or-
ganises information on the basis of objects, rather
than documents. Hence, version control is necessary
on the level of objects. In the remainder of this paper
‘object’ is used to denote all objects for which ver-
sion information is maintained: Concepts, Individu-
als, and components of Concepts as well as Indi-
viduals.

3.2.1 Why object versions?
Maintaining versions of objects representing a de-
sign is interesting for the purpose of documenting al-
ternatives of that design. Additionally, in the context
of collaborative design, version management of ob-
jects is important to maintain the consistency of an
object model that is accessed by multiple users.
Changes to objects will be administered through the
creation of versions and revisions, which ensures
that the state of objects recorded in previous ver-
sions will remain available. References between ob-
jects can make use of the version information of ob-
jects, so that the data consistency is not
compromised when new versions are created. Se-
mantic consistency is, of course, not ensured by the
implementation of object version management.

In literature, version control at the object level is
described in (Cellary & Jomier 1990), who use so-
called ‘stamps’ to identify object versions in multi-
version databases; in (Bernstein 1997), proposing
basic operations on versions that are identified
through a succeeds relationship; in (Kimber et al.
1999) who describe referent tracking documents as a
means to control version information through hyper-
link management.

Administering versions and revisions of objects
provides a means to archive the changes to objects.
In combination with authenticated access, it is pos-
sible to trace the changes of objects to the users who
made those changes. Having a record of the history
of each object also facilitates the browsing and re-
storing of previous states of a design model. This
has potential for, e.g., the narrative representation of
designs and for computer applications used in design
education and research.

3.2.2 Levels of versions
Version information for objects in the Concept
Modelling framework is structured in three levels. In
the top two levels, an integer number is used to iden-
tify versions: one for major versions and another for
minor versions. Numbering starts at 1 and minor
version numbering is restarted within each major

version. New major versions may be initiated by the
user either when he regards the changes significant
enough for a new major version, or by the system
when the changes are such that consistency prob-
lems are likely to arise in other places of the model.
For example, a new major version is created by the
system when a component is removed, because ex-
isting references to the concept may rely on the
presence of the component.

The third level of version information is for revi-
sions and time management. When an object is
checked out for editing, it will remain under revision
until it is submitted again as a new version. Also,
new objects are initially under revision until they are
submitted. Revisions are identified by their creation
time. The revision information is also maintained for
versions of objects, so the timestamp is available for
each object-version as well.

In the concept-modelling framework, either
committing a revision or submitting a version con-
cludes an editing activity. How this is done, manu-
ally or automatically, depends on the implementa-
tion in the application that is based on the
framework. The implication of this is that, once
committed or submitted, revisions and versions are
fixed and can no longer be changed. Changes on ob-
jects will always lead to the creation of new revi-
sions or versions. On the one hand, this helps ensure
consistency in the model. On the other hand, it calls
for smart ways of referencing objects, such that up-
to-date information is used when referring to an ob-
ject. This is discussed further in section 3.2.4.

Figure 1. Elements of the graphical notation of revision time-
lines.

3.2.3 Timeline management
Versions and revisions of objects have timestamps
that designate their lifetime. Because each version of
an object is also a revision, we will refer to ‘revi-
sion’ in this text to indicate both. Each revision of an
object always has a ‘valid from’ timestamp, indicat-
ing the moment this revision was created. When a
revision becomes outdated, either because the object
was deleted or because a newer revision was cre-
ated, this revision will also get a ‘valid to’ time-
stamp. This concludes the lifetime of the particular
revision. Subsequent revisions together form the
lifetime of an object. Normally, the ‘valid from’
timestamp of a revision corresponds to the ‘valid to’
timestamp of its predecessor. It is possible, however,
to revive an object that at one point has been deleted.
In this case, the timeline of revisions will show a
gap. Figure 1 shows the graphical notation that is

valid from

valid to

valid from

now

C

a

concept

component

used for the representation of timelines of objects.
Blocks indicate the beginning and ending of a par-
ticular revision’s lifespan; an arrowhead denotes ‘no
ending time’ meaning that the revision is the current
one.

Using the examples in the following figures, we
will examine the functioning of the timeline of ob-
jects. Figure 2 shows a Concept C1 that was created
at time t1 and a Concept C2 that was created at time
t2. Component a that refers to C2, was created and
added to C1 at time t3. The addition of this compo-
nent to C1 signifies a new minor version of C1. At
point t5, a new version of component a was created
(for example, because its cardinality was enlarged).

Note that this does not result in a new version of
Concept C1 that owns it. The deletion of component
b, however, results in a new major version of C1 at
point t6.

Figure 2. Example of a timeline of a structure of Concepts.

The timeline management of objects makes it possi-
ble for the system to find the correct references at
any particular moment in time. A change to Concept
C2, as shown at point t9 in the timeline, is thus
automatically taken into account when the reference
from C1 through its component a is followed at the
current moment in time, indicated as now. The
mechanism that deals with this follows the timelines
of related components and Concepts to their most
recent revisions that are alive at a given moment in
time. When we want to examine the state of version
1.3 of C1, this mechanism would look up the ‘valid
to’ timestamp of C1’s version 1.3 and subsequently
find the component b version 1.1 and component a
version 1.2 whose ‘valid from’ and ‘valid to’ times
straddle this timestamp. Following component a,
version 1.1 of Concept C2 would be found as the
version that is relevant for C1’s version 1.3.

Looking at the latest revision of Concept C1 this
way (now), the reference to Concept C2 by compo-
nent a will be followed to the latest version 2.1 of
C2.

A more complex example is shown in Figure 3
where a new version of component a was created at
point t5 by changing its reference from C2 to C3. C2
was then deleted at point t6. Component a itself was

deleted at point t10, leading to a new major version
of Concept C1.

Figure 3. More complex example of a Concept’s timeline.
Component a first changes its reference and is later removed
altogether, leading to a new major version for Concept C1.

3.2.4 Using the version control mechanism
References in the concept-modelling framework are
made with an indication of the level of version in-
formation that should be included in the reference.
The levels used in references are minor, major, and
logical, as shown in Figure 4. Making a reference to
an object without any version information signifies a
reference to the logical object (see component a in
Figure 4). Such a reference will always point to the
most recent revision of the referred object at the
given moment in time. By including version infor-
mation, the reference can be restricted to either a
particular major version or a particular minor ver-
sion. When a major version is referenced, the latest
minor version within the major version is used. Ref-
erences at the level of revisions are not relevant,
since the level of revisions is intended for editing
purposes only and cannot be used for making refer-
ences.

C1

a

b

1.1

1.2

1.3

2.1

1.1

1.2

1.3

1.1

time

t1
t2
t3

t4

t6

t5

C2

t7

1.1

1.2

2.1

t8

t9

now

C2
a

C1
1.1

1.2

1.3

1.1

1.2

1.1
t2

t3

t4

t5

t6

t7

t1

a

C3

2.1

b

1.1

1.1

1.2

C4
1.1 t8

t9

now

t10

t11
1.2

time

Figure 4. Four version-levels of detail exist: logical object, ma-
jor version, minor version, and revision. References to objects
can be made to the first three of these levels.
Looking again at Figure 2, the reference from com-
ponent a to Concept C2 at the moment now can re-
sult either in the retrieval of version 1.2, for example
in case the reference was made to the major version
1, or in the retrieval of version 2.1 if the reference
was made to the logical object C2.

Because revisions and versions, once submitted
to the system, cannot be removed anymore, the term
‘deletion’ gets a special meaning. When an object is
deleted, its latest revision is marked as ended by set-
ting its ‘valid to’ timestamp. References to the exist-
ing versions can still be made, but in the de-
referencing mechanism their timeline will be taken
into account.

One of the advantages of having version control
on the level of objects is that ‘undo’ operations can
be performed at the object level as well. ‘Undo’ in
this context means to re-establish a previous revi-
sion. This does not lead to a factual revival of the
particular revision, but to the creation of a new revi-
sion that has the state of the previous one. Strictly
speaking, ‘undo’ is thus not supported, but the re-
establishing of any earlier state of an object is,
which is in fact a richer mechanism.

3.2.5 Subscription and notification
In a collaborative design situation, changes to ob-
jects made by one user are often of interest to other
users. To get informed of such changes, a user can
subscribe to notifications issued by an object. If the
subscription request was accepted, the notification is
handled autonomously by the system and may lead
to an automatic update of references or even an
automatic upgrade of object versions. The right to
subscribe to an object is one of the access rights that
the owner of an object can grant to other users,
which is a necessary restrictive mechanism built into
the system to be able to limit the amount of commu-
nication.

4 BENEFITS AND POTENTIAL

The concept-modelling framework proposes to
model design information using a distributed object
model. This model provides controlled, multi-user
access to both conceptual and instantiated informa-
tion that is structured in a very flexible manner. It
integrates information that remains at the source and
in this manner provides a means to integrate busi-
ness processes. The advantages of this approach in-
clude:

1 Integration of business processes through data

sharing;
2 Enhanced consistency and reduced redundancy;
3 Control of information remaining with the owner;
4 Potential to connect a large variety of data

sources;
5 Authenticated and authorised access control in

combination with version management.

Although the concept-modelling framework is de-
veloped from the requirements identified in the con-
struction industry, its principles and functionality are
generic to product design. The potential of this tech-
nology therefore reaches many engineering disci-
plines and, for example, the discipline of industrial
design.

5 RESEARCH AGENDA FOR CSCW

From the current state of the work on the Concept
Modelling framework we defined a research agenda
for the further development of CSCW. Although we
have defined this agenda based on the Concept
Modelling framework, we expect it to have general
significance for the construction industry.

With the capabilities of direct access to remote
data, be it through the Concept Modelling frame-
work or through other web services, the industry
will show an increasing need for design and engi-
neering software that can transparently deal with
remote data. Having access to shared or exchanged
documents that are made available through networks
will no longer be sufficient when distributed object
models become the prevalent means to structure and
manage information.

Although a technology such as the Concept Mod-
elling framework and the more generic technology
of web services provide a means to technically de-
sign such ‘remoting-enhanced’ software, the impact
on the working methods will be dramatic and the ac-
tually supported design and engineering processes
may well need to be rethought. Fundamental re-
search, not only from a software engineering point
of view, but from within the construction industry,
will be required to address this issue.

1.1a

1.1b

1.2a

2.1a

2.1b

logical object

major version

minor version

revision

a

b

c

As was seen with the advent of using digital me-

dia to exchange design and engineering information,
the standardisation of communication protocols will
be essential for a successful uptake in the industry.
While institutional and de-facto standards have ap-
peared for the exchange of product data in docu-
ments, a similar standardisation will be necessary for
the communication between applications that utilise
distributed object models. The access of end-users to
the schemata of such models, as is provided in the
Concept Modelling framework, increases the com-
plexity of the required protocols. However, this per-
ceived complexity should not lead to the conclusion
that standardisation at this level is not feasible.
Standardisation at this level will be necessary to
achieve open-ended solutions that will be acceptable
by the industry as justifiable investments.

Some specific areas of design and engineering
support will be further developed using the technol-
ogy in the Concept Modelling framework. Initial re-
search results have been published on the implemen-
tation of case-based reasoning techniques that utilise
the concept-modelling approach (Fridqvist & van
Leeuwen 2002). Enabling case-based reasoning
tools to access structured, remote data in a transpar-
ent manner will increase their capabilities and the
scope of the reasoning mechanisms significantly.

Building on results from ongoing research at
Eindhoven University of Technology on multi-agent
systems (Arentze & Timmermans 2003, Dijkstra &
Timmermans 2002, Achten & Jessurun 2002), en-
hanced approaches to support design and planning
processes with autonomous agents representing spe-
cific domain knowledge will be investigated. These
agents can benefit from the flexibility of the Concept
Modelling framework and the accessibility of re-
mote data through the framework.

Other forms of creativity support that are cur-
rently under development in the Design Systems
group will be able to benefit from the capabilities of
the concept-modelling approach. The work by (van
der Zee & de Vries 2002) on genetic algorithms
aims to generate innovative solutions by combina-
tion of existing successful cases. The work by (Hey-
lighen & Segers 2002) currently focuses on using
linguistic relationships between concepts. Different
terminology used for similar concepts potentially
forms a limitation to the concept-recognition algo-
rithm. Linguistic relations such as synonyms, hypo-
nyms, etc., can be used to address this limitation by
expanding the search space. Integration of this work
with the concept-modelling paradigm is expected to
lead to mutual benefits.

REFERENCES

Achten, H.H. & Jessurun, A.J. 2002. “An Agent Framework
for Recognition of Graphic Units in Drawings,” in

Koszewski, K. and Wrona, S. (eds.) Proceedings of the
20th International Conference on Education and Research
in Computer Aided Architectural Design in Europe. War-
saw University of Technology, Warsaw. pp. 246-253.

Arentze, T.A. & Timmermans, H.J.P. 2003. “A Multi-Agent
Model of Negotiation Processes between Multiple Actors in
Urban Developments: A Framework and Results of Nu-
merical Experiments,” Environment and Planning B, Forth-
coming.

Augenbroe, G.L.M. and Lockley, S.R. 1999. “Project Man-
agement Issues in Remote CAD Outsourcing,” in Lacasse,
M.A. & D.J. Vanier (eds.) Durability of Building Materials
and Components 8, Institute for Research in Construction,
Ottawa, Canada, pp. 2559-2568.

Augenbroe, G.L.M. (ed.) 1995. COMBINE 2 Final Report,
CEC report HOU2-CT92-0196, Delft: Delft University of
Technology.

Bernstein, P.A. 1997. “Repositories and Object-Oriented Data-
bases.” In: Dittrich & Geppert (eds.) Datenbanksysteme in
Buro, Technik und Wissenschaft (Proceedings of BTW Con-
ference), Springer Verlag, Berlin.

Böhms, M. & Tolman, F. 2001. “Building and construction
eXtensible mark-up language (bcXML)” in Coetzee, G. &
Boshoff, F. (eds.) IT in construction in Africa 2001, Mpu-
malunga, 30 May - 1 June, South Africa.

Bronsvoort, W. F. & Jansen, F.W. 1993. “Feature Modelling
and Conversion - Key Concepts to Concurrent Engineer-
ing,” Computers in Industry, 21:1, pp. 61-86.

Bronsvoort, W.F. & Jansen, F.W. 1994. “Multi-view feature
modelling for design and assembly,” in Shah, J.J., Män-
tylä, M., & Nau, D.S. (eds.) Advances in Feature Based
Manufacturing, Elsevier Science, Amsterdam, pp 315-330.

Cellary, W. & Jomier, G. 1990 “Consistency of Versions in
Object-Oriented Databases.” In: Proceedings of the 16th
VLDB Conference, Brisbane, Australia, 1990. pp. 432-441.

Datta, S. 2002. “Managing Design Knowledge with Mixed-
Initiative Dialogue,” in Timmermans, H.J.P. & de Vries, B.
(eds.) Design and Decision Support Systems in Architec-
ture, Eindhoven University of Technology, NL.

Dijkstra, J. & Timmermans, H.J.P. 2002. “Towards a multi-
agent model for visualizing simulated user behavior to sup-
port the assessment of design performance,” Automation in
Construction, 11:2, pp. 135-145, Elsevier Science.

Eastman, C.M. 1996. “Managing Integrity in Design Informa-
tion Flows,” Computer Aided Design, 28:6-7, pp. 551-565,
Elsevier Science.

Eastman, C.M. 1999a. Building Product Models: Computer
Environments Supporting Design and Construction, CRC
Press LLC, Boca Raton, Florida, USA.

Eastman, C.M. 1999b. “Information Exchange Architectures
for Building Models,” in Lacasse, M.A. & Vanier, D.J.
(eds.) Durability of Building Materials and Components 8,
Institute for Research in Construction, Ottawa, Canada, pp.
2139-2156.

Eastman, C.M. & Jeng, T.S. 1999. “A Database Supporting
Evolutionary Product Model Development for Design,”
Automation in Construction, 8:3, pp. 305-324, Elsevier Sci-
ence.

Ekholm, A. 2002. “Principles for Classification of Properties
of Construction Objects,” in Agger, K., Christiansson, P. &
Howard, R. (eds.) Distributing Knowledge in Building –
CIB W78 conference proceedings, Aarhus, 2002, DK.

Fridqvist, S. & van Leeuwen, J.P. 2002. “Feature Type Recog-
nition – implementation of a recognizing feature manager”
in Distributing Knowledge in Building – Proceedings of
CIB W78, Aarhus, Denmark: 12-14 June 2002.

ISO-10303 2000. ISO PAS 12006, Building Construction –
Organization of Information about Construction Works –

Part 3: Framework for Object-Oriented Information Ex-
change.

Heylighen, A. & Segers, N.M. 2002. “An architectural
Shift+F7 - Supporting concept development through design
cases,” in Proceedings of the ARCC/EAAE 2002 - Interna-
tional Conference on Architectural Research, Montreal.

Kimber, W.E., Newcomb, S., & Newcomb, P. 1999 “Version
Management as Hypertext Application: Referent Tracking
Documents.” In: Usdin, B.T. (ed.) Proceedings of Markup
Technologies ’99. Philadelphia, Pennsylvania, USA, Dec.
7-9, 1999. pp. 185-198.

Kiviniemi, A. 1999. “IAI and IFC – state-of-the-art,” in La-
casse, M.A., Vanier, D.J. (eds.) Information technology in
construction, volume 4, Vancouver, Canada

Kvan, T. 2000. “Collaborative design: What is it?” Automation
in Construction, 9:4, pp. 409-415, Elsevier Science.

Kvan, T. & Candy, L. 2000. “Designing Collaborative Envi-
ronments for Strategic Knowledge in Design,” Knowledge-
Based Systems, 13:6, pp 429-438, Elsevier Science.

Shah, J.J. & Mäntylä, M. 1995. Parametric and Feature-Based
CAD/CAM, New York: Wiley & Sons.

Tolman, F., Stephens, J., Steinmann, R., van Rees, R., Böhms,
M., & Zarli, A. 2001. “bcXML, an XML Vocabulary for
Building and Construction” in Symposium Report on the
2nd Worldwide ECCE Symposium. Information and Com-
munication Technology in the Practice of Building and
Civil Engineering, RIL - Association of Finish Civil Engi-
neers; VTT - Technical Research Centre of Finland, Build-
ing Technology, 6-8 June 2001, Espoo, Finland.

Turk, Z. 2000. “Communication Workflow Approach to CIC”
in Fruchter, R., Pena-Mora, F., & Rodis, K. (eds.) Comput-
ing in Civil and Building Engineering, pp. 1094-1101.

van der Zee, A. & de Vries, B. 2002. “Computer Aided Evolu-
tionary Architectural Design,” 5th International Confer-
ence on Generative Art 2002, Milaan 11-13 December
2002.

van Holland, W., Bronsvoort, W.F., & Jansen, F.W. 1995.
“Feature modelling for assembly,” in Straszer, W. & Wahl,
F. (eds), Graphics and Robotics, Springer-Verlag, Berlin,
pp. 131-148.

van Leeuwen, J.P., Wagter, H., & Oxman, R.M. 1996. “Infor-
mation modelling for design support - a Feature-based ap-
proach.” In Proceedings of the 3rd Conference on Design
and Decision Support Systems in Architecture and Urban
Planning, Spa, Belgium, pp. 304-325.

van Leeuwen, J.P. & Wagter, H. 1997. “Architectural design-
by-Features.” In Proceedings of CAAD Futures '97,
München, Germany: TU München, pp. 97-115.

van Leeuwen, J.P. 1999. Modelling Architectural Design In-
formation by Features. PhD thesis. Eindhoven, NL: Eind-
hoven University of Technology.

van Leeuwen, J.P., Hendricx, A., & Fridqvist, S. 2001. “To-
wards Dynamic Information Modelling in Architectural
Design.” In Construction Information Technology – Pro-
ceedings of CIB W78, Mpumalanga, South Africa, 30 May
– 1 June 2001.

van Leeuwen, J.P. & Fridqvist, S. 2002a. “Design Knowledge
Sharing through Internet Application.” In Proceedings of
CE 2002, International Conference on Concurrent Engi-
neering, Cranfield, UK: 27 – 31 July 2002.

van Leeuwen, J.P. & Fridqvist, S. 2002b. “Supporting Collabo-
rative Design by Type Recognition and Knowledge Shar-
ing.” Electronic Journal of Information Technology in Con-
struction, Vol. 8, 2002.

Woestenenk, K. 2000. “Implementing the LexiCon for Practi-
cal Use” in Gudnason, G. (ed.) Construction Information
Technology 2000, Reykjavik, Iceland.

W3C-XML 2000. Extensible Markup Language (XML) 1.0
(Second Edition), World Wide Web Consortium Recom-

mendation, 6 October 2000, http://www.w3.org/TR/REC-
xml

