Published as: van Leeuwen, J.P. and S. Fridgu@&t3R“Object Version Control for Collaborative
Design” In: Tunger, Ozsariyildiz, and SariyildE;Activities in Building Design and Construction,
Proceedings of the"9EuroplA International Conferencéstanbul, TR, October 8 — 10, 2003, EuroplA
Productions, pp. 129-139.

Object Version Control for Collaborative Design
Characteristics of the concept-modelling framework

JosP. VAN LEEUWEN?*, Sverker FRIDQVIST*

Abstract: In this paper we describe the main chadstics of the concept-
modelling framework that is developed in the DepKgect on Design Knowledge
services. Concept modelling gives end-users adoethe schema of design models
and provides a high level of flexibility for modiedf. To support collaborative
design, it provides remote data access and allogeysuto share active resources
that, instead of being exchanged or stored centra#main at their source in tight
relation with business processes. The concept-tingeframework implements
object version control and uses timeline managemémersions and revisions of
objects to increase the integrity between objebts tire accessed and edited by
multiple users across a network.

Keywords: Collaborative Design; Concept Modellin@bject Version Control;
Design Support Systems; Information Modelling

1 Introduction

The DesKs research project aims to develdpesign Knowledge serviceby
implementing the so-calledconcept-modelling framewark Additionally, the
framework provides a common theoretical and prathasis for the development of
design and decision support systems, which can gpdied in the context of
collaborative design. This technology provides gesis with the tools to formalise
design knowledge and to share active design ressurc

2 Concept Modélling

Concept modellingis a dynamic form of product modelling. It givésetend-user
access to the schema of models used for the repagisa of designs and products.
In concept modelling, the schema used for modelngxpressed in objects called
Concepts while a model for a particular design or prodiscexpressed in objects
called Individual$. The DesKs research project described in this mpdmes
implemented the concept-modelling paradigm inttveotetical framework and an
API that form the basis for the development of glesind decision support systems.

Eindhoven University of Technology, The Netherland
(J.P.v.Leeuwen@tue.nl - http://www.ds.arch.tue.nl)

In previous publications, we have used the tierature modellingAlthough in many early
publications in the area of feature modelling #vent feature has generic meaning, most of the later
research on feature modelling is restricted to fteatures. Therefore, using the term feature in a
generic sense appeared to be confusing and wedleaided to change our terminology, using
Concepffor Feature Type anlitidividual for Feature Instance.

For reason of clarity, capitalization is used igtidguish the terms Concept and Individual as aisje
in the concept-modelling framework from the terroaaept and individual in the English language.

2.1.1Concepts and Individuals

Any Individual is related to a Concept that defiitegnitial structure and value. The
relationship between an Individual and its Condspinaintained, although it is a
loose relationship. It is possible to change whan¢@pt an Individual is based on,
which allows a designer to adapt the meaning of dbgects representing the
developing design as the design process proceedexBmple in spatial design, the
outer contours of a building can initially be mdddlas Individuals that are created
from a generic Concept for space boundaries, vetike later stage these Individuals
may refer to a more specific Concept defining s&md of cavity wall.

In the concept-modelling framework, both Conceptd &ndividuals are internally
part of an object model that is available for apgtion development.

2.1.2Property-oriented modelling

Concept modelling is a property-oriented modelliagproach [LHF 2001]. A
property can be explained as a characteristidshattributed to a thing. Examples of
properties are: colour, shape, mass, location,famction. Many different kinds of
things can have a property in common, but no twad&iof things share all
properties [LF 2002a].

A property-oriented modelling system allows theiglesr to initially create an
empty object to represent his design, and thendtb moperties to that object to
reflect the different things he needs to expressuaithe design. Alternatively, the
designer can just create the desired propertigheofdesign and add them to the
model, while postponing the decision to which otgethese properties are
attributed. Property-oriented modelling allows thesigner more freedom to decide
upon the context of properties and how propertieskwogether in achieving the
required functionality of the designed object, whis an important capability during
the course of design. Thus, a property-orientetegysloes not impose any order or
other restrictions on the design process [LF 2002a]

In the concept-modelling paradigm, property oriéatais achieved by allowing the
addition of properties to Individuals whose Conseglo not predefine those
properties. This enables designers to make Indal&dunore specific than their
original, generic Concepts. At a later stage, atividual's reference to Concepts
can be refined to better reflect the actual meawihthe particular Individual. For
example, an individual ‘door’ in a model, whichingtially based on a generic ‘door’
concept, may receive additional properties duriegigh that make it a sliding door
and transparent. At the appropriate moment in #sgth process, the designer can
decide to make this particular door refer to a Hpeconcept provided by a
manufacturer of glass sliding doors. Propertieshénconcept-modelling framework
are represented omponentsComponents are used to define the meaning of both
Concepts and Individuals.

2.1.3Multiple instantiation and multiple inheritance

Individuals can relate to multiple Concepts. Theflects the notion, for example,
that a particular object in a design exhibits salvéunctions, or can be regarded
from various points of view. This is useful for niads it possible to attach

knowledge to objects whenever the knowledge comts view. For example, a
Concept definition for costs can be added to aiqudar object in the design when
costs become an issue in the design process. bttedjiented terminology, this
capability could be explained as an object beingrstance of multiple classes,
which are determined by the end-user.

Concept modelling also supports inheritance of cmmepts. This allows the
definition of sub-concepts that inherit componeottther concepts but that have
additional components to make it a more specifiecept. Multiple inheritance is
supported to allow concepts to inherit componemtsnf more than one other
concept.

2.2 Examples

Some examples of how the concept-modelling framkwerused will clarify its
capabilities. Figure 1 shows the graphical notatiat is used for the representation
of Concepts and Individuals. Note that this graphimotation does not reflect the
full features of the modelling framework but merederves illustration and
interfacing purposes.

—=< inheritance
—O decomposition

—@ association
—P specification

Figure 1 Graphical notation of Concepts, Individsiatomponents, and
relationships.

Figure 2 shows a Concept ‘Door’ that has two conembs that define the width and
height of doors. Both these components refer taQbecept ‘Measure.” Not shown
in the picture are the properties of the componesush as their cardinality. In grey,
the figure shows an Individual ‘MyDoor’ that is lees on the Concept ‘Door’.
Through the component ‘width’ it provides a relasbip with an Individual of the
Concept ‘Measure’ that is shown by its value of0@6hm.” The component ‘height’
is not created at this point. In addition to thenponents that are defined by the
‘Door’ Concept, ‘MyDoor’ has two components thatfide it as a sliding,
transparent door. Note that in this example all ponents form a so-called
specification relationship between Concepts.

At a later stage in the design process, the desigag want to find a more specific
Concept for the Individual ‘MyDoor’ that better mhaes the description he has
given it. Searching manually, or using a technigaked Concept Recognition, such
Concepts may be found using resources on a netfarkxample, a manufacturer’s
resources. Figure 3 shows a Concept for a slidimgiaium door that inherits from
the generic ‘Door’ Concept, adding components lier apening method and for the
materials used. Since one of its materials is gltds door matches the search
criteria. Note that the Concept inherits the widtid height components from the
generic door and that the additional componentsrrif Individuals, rather than

Concepts. When a component refers to an Individihéd, means that its value is
fixed at the conceptual level: all Individuals béhamn this concept will be sliding
doors in aluminium and glass. This mechanism alldhe definition of static

information at the conceptual level.

Door Measure
~ e

MyDoor

Sliding

Figure 2 Example of a generic Concept ‘Doors’, difiy ‘width’ and ‘height’
components that refer to the Concept ‘Measure.lmdividual door that specifies
one of these components also has additional conmgerier the opening method
and opacity of the door.

oo {1

Sliding

Slid.alu.door

material

Figure 3 Example of a Concept that inherits from fhoor’ Concept and that has
references to Individuals as fixed values for sawfgitional components.

Transparent

3 Collaborative Design

The concept-modelling framework, succinctly desadibabove, is designed to
support collaboration in design. In collaborativesign, apart from the social and
organisational aspects, a number of important t@cdgcal issues refer to means of
communication and to the shared access to designmation by multiple users on
distributed locations. The concept-modelling fraroegw enables the sharing of
design knowledge by making use of remote data-adeefinology. In contrast with,
for example, document management systems and pre@xsites, in our approach
the point of departure is not to centralise propat, but to keep data at its source.
This has the advantage that the data will remaid td the business processes and
that access control and validity of data remaiesrésponsibility of the owner of the
data. Access control is managed on the basis efctdhjvarious levels of access to

individual objects can be granted to groups andsuggliting in this environment is

thus not restricted to the information that is oy a particular user or group; one
can also get the rights to edit information in oteeurces. Communication is not
based on the exchange or sharing of documentsptuhe sharing of objects.

Design information, be it generic information ofdrmation concerning a particular
design project, is stored and accessed throughnrieof distributed resources.

3.1 Multi-user access control

To facilitate collaborative design, it is necesstaryauthenticate the access of users
to shared information resources. Also, levels ofeas must be specified for
controlling how users are authorised to performrapens on information. In the
concept-modelling framework, access-levels are usegovern reading, copying,
using, referring to, and editing information. Edgiis controlled by a checkout-and-
commit mechanism that works on object-basis. Ubar® to check out an object,
marking it as being under revision, before they osake changes to it. Once the
changes are made, the object is committed backetisdurce and stored as a new
version or revision (see section 4). The checkoathanism can be applied to work
automatically or manually. This is related to threedes of editing that are
distinguished:

* Instantaneous editings required when changes made by one user should
instantly be visible to other users. This mode a@irking is applied, for
example, in virtual workspaces when users collaleosgnchronously on a
design and need to see and communicate about gaefsomodifications,
such as dragging an object, in real time. Durinchsa drag-operation, the
changes to the coordinates are instantly madeadbaito all users.

» Intermittent editingis sufficient when users do not need to have msta
updates of modifications in synchronous collaboratisessions. The
changes are made available only when the userdmasiitted them.

« Off-line editingis relevant when network facilities are not perety
available. Objects remain checked out for a lomggiod and changes are
committed only the next time a user is online.

The implementation of the concept-modelling framgwoses remote data access
and ensures that multiple accesses to an objeclhcaddress one single object.

4 Object Version Control

In this section concentrate on one aspect of nuski- access to shared information:
version control. Since the concept-modelling apphoaises objects instead of
documents as the basis for structuring and organisiformation, version control is
required on the level of objects. In the remaindithis paper ‘object’ is used to
denote all objects for which version information maintained: Concepts,
Individuals, and Components (for both Conceptsladd/iduals).

4.1 Why object versions?
Maintaining versions of objects representing agless interesting for the purpose
of documenting alternatives of that design. Addisily, in the context of

collaborative design, version management of objectisnportant to maintain the
consistency of an object model that is accesseaduliiple users. Changes to objects
will be administered through the creation of vemsi@nd revisions, which ensures
that the state of objects recorded in previous ioess will remain available.
References between objects can make use of thewenformation of objects, so
that the data consistency is not compromised whew wersions are created.
Semantic consistency is, of course, not ensuredheyimplementation of object
version management.

In literature, version control at the object leieldescribed in [CJ 1990], who use
so-called ‘stamps’ to identify object versions inltitversion databases; in [BER
1997], proposing basic operations on versionsdhatidentified through aucceeds
relationship; in [KNN 1999] who describe referemrsaking documents as a means to
control version information through hyperlink maeagent.

Administering versions and revisions of objectsvies a means to archive the
changes to objects. In combination with authergigaiccess, it is possible to trace
the changes of objects to the users who made tiea®es. Having a record of the
history of each object also facilitates the browsamd restoring of previous states of
a design model. This has potential for, e.g., thgative representation of designs
and for computer applications used in design edtutaind research.

4.2 Levelsof versions

Version information for objects in the Concept Mitidg framework is structured in
three levels. In the top two levels, an integer bemis used to identify versions: one
for major versionsand another fominor versionsNumbering starts at 1 and minor
version numbering is restarted within each majosie@. New major versions may
be initiated by the user either when he regardstamges significant enough for a
new major version, or by the system when the charge such that consistency
problems are likely to arise in other places of ithedel. For example, a new major
version is created by the system when a comporsergmoved, because existing
references to the concept may rely on the presefrite component.

The third level of version information is feevisions When an object is checked
out for editing, it will remain under revision uhtt is submitted again as a new
version. Also, new objects are initially under mon until they are submitted.
Revisions are identified by their creation time.eTtevision information is also
maintained for versions of objects, so the timesgtasavailable for each object-
version as well.

In the concept-modelling framework, an editing tfi is concluded by either
committing a revision orsubmitting a version. How this is done, manually or
automatically, depends on the implementation inuber’s application that is based
on the framework. The implication of this is thahce committed or submitted,
revisions and versions are fixed and can no lobgechanged. Changes on objects
will always lead to the creation of new revisionsversions. On the one hand, this
helps ensure consistency in the model. On the diaed, it calls for smart ways of
referencing objects, such that up-to-date inforomais used when referring to an
object. This is discussed further in section 4.4.

4.3 Timeline management
Versions and revisions of objects have timestaniaé tlesignate their lifetime.
Because each version of an object is also a revisie will refer to ‘revision’ in this
text to indicate both. Each revision of an objdatags has a ‘valid from’ timestamp,
indicating the moment this revision was createdewWa revision becomes outdated,
either because the object was deleted or becaosaer revision was created, this
revision will also get a ‘valid to’ timestamp. Th&oncludes the lifetime of the
particular revision. Subsequent revisions togefioem the lifetime of an object.
Normally, the ‘valid from’ timestamp of a revisiacorresponds to the ‘valid to’
timestamp of its predecessor. It is possible, h@neto revive an object that at one
point has been deleted. In this case, the timafrrevisions will show a gap. Figure
4 shows the graphical notation that is used forréresentation of timelines of
objects. Blocks indicate the beginning and endihg particular revision’s lifespan;
an arrowhead denotes ‘no ending time’ meaningtti@tevision is the current one.

0 valid from valid from

O

o
valid to \4 now
Figure 4 Graphical notation of a revision’s timedin

Using the examples in the following figures, welwikplain the functioning of the
timeline of objects. Figure 5 shows a Conc€fitthat was created at tint& and a
ConceptC2 that was created at tinti2. Componenat that refers taC2, was created
and added t&1 at timet3. The addition of this component €1 signifies a new
minor version ofC1. At pointt5, a new version of componeatwas created (for
example, because its cardinality was enlarged)e Mot this does not result in a
new version of Conceptl that owns it. The deletion of compondnthowever,
results in a new major version 61 at pointt6é. The timeline management of objects
makes it possible for the system to find the cdrmederences at any particular
moment in time. A change to Concep?, as shown at poin8 in the timeline, is
thus automatically taken in account when the refegefrom C1 through its
componenta is followed at the current moment in time, indedhtasnow. The
mechanism that deals with this follows the timedingf related components and
Concepts to their most recent revisions that aine @t a given moment in time.
When we want to examine the state of version 1Glpthis mechanism would look
up the ‘valid to’ timestamp dE1's version 1.3 and subsequently find the component
b version 1.1 and componeatversion 1.2 whose ‘valid from’ and ‘valid to’ time
straddle this timestamp. Following componantsersion 1.1 of ConcegZ2 would
be found as the version that is relevant@drs version 1.3.

Looking at the latest revision of ConcePtl this way @ow), the reference to
ConceptC2 by componend will be followed to the latest version 2.1 ©2.

—t1
11 — 12
ﬂI] -n L1 — 13
Ii]l.z L1) “
] J—

113 111 |_|l_| ! — t5
| | 112 |
B, o ' | -9
|] !

| 113 0 — 18
i : d]l 2 — 19
: ! 121
\Y \Y v — now

Figure 5 Example of a timeline of a structure ohCepts.

A more complex example is shown in Figure 6 whenew version of componeat
was created at poith by changing its reference fro82 to C3. C2 was then deleted
at pointté. Componenta itself was deleted at pointl0, leading to a new major
version of Conceptl.

time
— i1

L)
e
=S

.1

: — 12

| — 13

:1-2 — t4

[}

[}

: — 15

[}

: — t6

:1.3 — t7

1 11.1

|.|_.| : — t8

i ! — 1
[}

m | — t10

>t] — 1

: 1.2

|

\Y v — now

Figure 6 More complex example of a Concept’s tineeli
Component a first changes its reference and & lsgmoved altogether,
leading to a new major version for Concept C1.

4.4 Using the version control mechanism
References in the concept-modelling framework aaelerwith an indication of the
level of version information that should be incldde the reference. The levels used

in references areninor, major, and logical, as shown in Figure 7. Making a
reference to an object without any version infoliorasignifies a reference to the
logical object (see componeatin Figure 7). Such a reference will always pomnt t
the most recent revision of the referred objecthat given moment in time. By
including version information, the reference canréstricted to either a particular
major version or a particular minor version. Whemaor version is referenced, the
latest minor version within the major version iedsReferences at the level of
revisions are not relevant, since the level of giewis is intended for editing
purposes only and cannot be used for making redesen

a
| 1 — major version
1.1b

I~ . .
[~ minor version

/T

II' e logical object
1.1

(]

[]

! \ revision

1.2a

£

2.1a

2.1b

Figure 7 Four version-levels of detail exist:
logical object, major version, minor version, aralision.
References to objects can be made to the firse thf¢hese levels.

Looking again at Figure 5, the reference from congma to ConceptC2 at the
momentnow can result either in the retrieval of version ¥d,example in case the
reference was made to the major version 1, orenrétrieval of version 2.1 if the
reference was made to the logical obje2t

Because revisions and versions, once submittetietsystem, cannot be removed
anymore, the term ‘deletion’ gets a special meaniligen an object is deleted, its
latest revision is marked as ended by settingvaitid to’ timestamp. References to
the existing versions can still be made, but in dieereferencing mechanism their
timeline will be taken into account.

One of the advantages of having version contraherievel of objects is that ‘undo’
operations can be performed at the object leveladls ‘Undo’ in this context means
to re-establish a previous revision. This doesleatl to a factual revival of the
particular revision, but to the creation of a neavision that has the state of the
previous one. Strictly speaking, ‘undo’ is thus sopported, but the re-establishing
of any earlier state of an object is, which isaotfa richer mechanism.

4.5 Subscription and notification

In a collaborative design situation, changes t@ctsj made by one user are often of
interest to other users. To get informed of sucanges, a user can subscribe to
notifications issued by an object. If the subsdiptrequest was accepted, the
notification is handled autonomously by the systsml may lead to an automatic
update of references or even an automatic upgradeject versions. The right to
subscribe to an object is one of the access ritffiisthe owner of an object can
grant to other users, which is a necessary raggiotechanism built into the system
to be able to limit the amount of communication.

5 Conclusionsand current work

Using timeline management for object version cdntras a number of major
advantages. Firstly, adding the time informatioripbeto register all design
activities, which makes it easy to interpret whais thappened in the process.
Secondly, time-based relationships can be foundidsai versions of objects. This
makes it easy to find the correct version of relatejects in a particular context.
Finally, with time-based version control it is m#cessary to propagate the creation
of new versions up into hierarchical trees. Thiprapch potentially solves some of
the problems addressed in research on version gatipa, as described in [UO
1996], since it makes evident what the lifetimeath version is.

The presented framework is currently implementedhi form of an Application
Programming Interface (API) that forms the basis tfee development of design
support systems. One system that is under develupaméehe time of this writing is
an application that enables designers to searcbughr product descriptions,
provided in the concept-modelling format, using fwecalled concept recognition
algorithm. This algorithm compares the structurédnadlividuals in a particular
design model with the definitions of Concepts irdesrto find a Concept that
matches the design implied by the configuratiorinofividuals. Integration of this
application in, e.g., existing CAD systems will reait possible to create a direct
link between design stages and the informationlavia from the supply chain.

6 References

[BER 1997] Bernstein, P.A. 1997. “Repositories d@blject-Oriented Databases.”
In: Dittrich and Geppert (ed€Datenbanksysteme in Buro, Technik und Wissenschaft
(Proceedings of BTW Conferenc8pringer Verlag, Berlin.

[CJ 1990] Cellary, W. and Jomier, G. 1990 “Consiste of Versions in Object-
Oriented Databases.” IfProceedings of the 6VLDB Conference Brisbane,
Australia, 1990. pp. 432-441.

[FRI 2000] Fridqgvist, S. 200Property-Oriented Information Systems for Design
PhD thesis, Lund University, Sweden.

[KNN 1999] Kimber, W.E., Newcomb, S., and Newcon®, 1999 “Version

Management as Hypertext Application: Referent TimgkDocuments.” In: Usdin,

B.T. (ed.) Proceedings of Markup Technologies /9hiladelphia, Pennsylvania,
USA, Dec. 7-9, 1999. pp. 185-198.

[LEE 1999] van Leeuwen, J.P. 1999odelling Architectural Design Information by
Features PhD thesis, Eindhoven University of Technologiie Netherlands.

[LHF 2001] van Leeuwen, J.P., A. Hendricx, and Sddvist. 2001. "Towards
Dynamic Information Modelling in Architectural Desi." In: Proceedings of CIB
W78 workshop on Construction Information Technolofjpumalanga, South
Africa, 30 May - 1 June, 2001.

[LF 2002a] van Leeuwen, J.P. and S. Fridqvist. 208@pporting Collaborative
Design by Type Recognition and Knowledge Sharindgectonic Journal of
Information Technology in Construction (ItCon). v6(2002). 167-181.

[LF 2002b] van Leeuwen, J.P., and S. Fridgvist. 200n the Management of
Sharing Design Knowledge. In: Proceedings of théBWTY8 Conference —
Distributed Knowledge in Building. June 12 — 14020Aarhus, Denmark.

[UO 1996] Urtado, C. and Oussalah, C. 1996. “SeimaRules to Propagate
Versions in Object-Oriented Databases.” In: Novik® and Schmidt, J. (eds.)
Advances in Databases and Information Systénternational workshop, Moscow,
Sept. 10-13, 1996.

