
www.elsevier.com/locate/compind

Computers in Industry 57 (2006) 809–816
An information model for collaboration in the construction Industry

J.P. van Leeuwen *, S. Fridqvist

Eindhoven University of Technology, Department of Architecture, Building, and Planning, Design Systems Group,

P.O. Box 513-VRT 9.11, 5600 MB Eindhoven, The Netherlands

Accepted 27 April 2006

Available online 23 June 2006
Abstract
Collaborative work is an essential ingredient for success in the construction industry. With the advancements of capabilities of information

technologies and communication infrastructures, the effective utilisation of these technologies has become very important and strongly affects

business processes that have long followed traditional paths. This article describes the main characteristics of the concept-modelling framework

that is developed in the DesKs project. Concept modelling gives end-users access to the schema of design models and provides a high level of

flexibility for modelling. To support collaborative work, it provides remote data access and allows users to share resources that, instead of being

exchanged or stored centrally, remain active at their source in tight relation with business processes. The main technical aspects of the concept-

modelling framework are discussed. Object version control and timeline management of revisions of objects are used to increase the integrity

between objects that are accessed and edited by multiple users across a network.

2006 Elsevier B.V. All rights reserved.

Keywords: Collaborative design; Concept modelling; Object version management
1. Collaborative design

Construction projects typically are projects in which a large

number of participants have to work together on the design and

production of a complex product that is one-of-a-kind. Many of

these participants do not work together on a regular basis; teams

in construction projects are often organised on a project-basis.

Yet, collaboration in the design process of such projects is

generally regarded to be the critical factor of success.

Collaborative design is a term that denotes more than just

co-operation. In co-operation, participants work together to

achieve mutual benefits but do not necessarily have a common

goal. They will retain their own resources, sharing only the

minimum required for the co-operation. In collaboration,

however, the participants are committed to a common mission

and are willing to share the knowledge that is necessary to fulfil

that mission [1,2].
* Corresponding author. Tel.: +31 402472288; fax: +31 402450328.

E-mail address: J.P.v.Leeuwen@bwk.tue.nl (J.P. van Leeuwen).

URL: http://www.ds.arch.tue.nl

0166-3615/$ – see front matter # 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.compind.2006.04.011
1.1. State-of-the-art in CSCW

Current practice of computer support for collaborative work

(CSCW) in the construction industry mainly utilises tools such

as centralised project databases, systems for workflow

management (WFM) [3–5], and electronic document manage-

ment (EDM) applied in local or wide area network environ-

ments. Although beneficial to the industry, this kind of support

has important limitations. Centralisation of project data aims to

bring together all data that concerns a project. However, the

boundary between project-related data and project-independent

data is not clearly defined. Hence, centralised databases are

never complete. More importantly, centralised project data

becomes isolated from business processes that are not

centralised.

Tools for workflow and document management are

generally based on documents as organising entities. Although

documents may be a good means for human beings to

communicate, they are not a logical means to organise and store

information. Consistency of information is often compromised

when multiple documents describe different aspects (e.g. shape

and material) of one artefact, or when one aspect (e.g. a

particular measure) is redundantly repeated in several docu-

ments.

mailto:J.P.v.Leeuwen@bwk.tue.nl
http://dx.doi.org/10.1016/j.compind.2006.04.011

J.P. van Leeuwen, S. Fridqvist / Computers in Industry 57 (2006) 809–816810
Research and development of product modelling technology

involves the implementation of object-oriented approaches for

the description of products throughout their life cycle [6,7]. The

general methodology applied in product model development is

to predefine schemata of object classes that represent the

common ground for a particular domain. International

standards of schemata are being defined for many disciplines,

including various domains within the building and construction

industry [8–12]. Using the schemata, designs can be described

by populating object models with properties and relationships

that are defined in the object classes. Communication takes

place either by exchanging these models as documents or by

placing them in centralised databases.

1.2. Identified problems

The notion of standardising object classes for modelling

designs is currently based on the assumption that a satisfying

classification of high-level objects can be agreed upon by all

actors within the construction industry. Product modelling

developments for this industry manifest the following problems

in relation with collaborative design:
1. I
nadequate standards: Object classes are generally targeted

at production stages. This renders the schemata unacceptable

for early design stages, because the concepts used in early

stages differ from those in later stages. Using the more final

concepts in early design would imply or enforce many

decisions in the early stages that designers do not want to

take at that point. Neither are the production-centred classes

particularly suitable for the maintenance phase.
2. I
naccessible schemata: The schemata are predefined and not

accessible for changes by end-users. Again, this makes the

schemata hard to use in the early stages of design, when

standard concepts may not fit the particularities of the

design, or state of the design, that designers need to express.
3. I
nflexible standards: Standardisation concentrates on the

definition of classes for real-world objects with all their

properties and interrelationships. Typically, the schemata

contain classes for different kinds of walls, floor slabs,

windows, doors, heating components, and so forth. This

enforces a classification of products, which does not

necessarily serve the needs of the supply chain, for example,

when new products are developed or when multiple

functions are combined into single products.
4. M
onolithic standards: To support communication, product

modelling schemas need to be standardised. Unfortunately,

the efforts to create standards such as the IFCs [39] seem to

result in large schemas intended to cover all needs for a

branch of industry. Such large schemas are hard to

accomplish to begin with, and will become hard to maintain

as technology and practices change.
5. E
1 In this work, concept modelling was called feature based modelling, but a

change of terminology was made in 2002 to avoid confusion with form features.

The terms Feature Type and Feature Instance were changed into Concept and

Individual.
xchange rather than sharing: Exchanging documents or

using centralised project databases for the communication

separates data from its source and isolates it from the

business processes. This leads to redundancy and potentially

to inconsistency and outdated data. In any case, it does not
contribute satisfactorily to a tighter integration of business

processes from partners in a collaboration project.
6. N
o design support integration: The problems identified

above render product modelling an ineffective technology

for design support in the construction industry. As a result,

many R&D efforts that aim to support specific design tasks,

such as case-based reasoning, simulation, and evaluation

systems, cannot make use of the richness of integrated

information that could potentially be delivered by product

modelling. This seriously obstructs the path for integration

of design support systems with computer support for

collaborative work.

2. Concept modelling

Concept modelling is a technology that provides:
� u
ser access to the definition of schemata;
� p
roperty-oriented modelling;
� a
 distributed object model for sharing rather than exchanging

information;
� s
upport for a layered approach to modelling, which resolves

the problems of monolithic standards.

Concept modelling is a dynamic form of product modelling

that was initially described by van Leeuwen1 [13]. Concept

modelling supports designers by giving them access to the

schema, the conceptual level of the product model. This allows

designers to describe design concepts in a formal manner by

defining extensions to the schema. Such design concepts may

represent tangible objects as well as more abstract notions such

as functions or properties. Concept modelling uses Concepts to

build conceptual schemas (also known as ontologies) while

specific models representing individual designs are built with

Individuals. The meaning or interpretation of Individuals is

given through reference to Concepts. In other words, the

Concepts defined in a schema can be used to instantiate

Individuals that represent information concerning a particular

design. The internal structure of both Concepts and Individuals

is created through components that define the Concept or

Individual by connecting it to other Concepts or Individuals in

specific ways, for example, to denote a part-of relation.

While being property-oriented, i.e. supporting modelling of

properties as individual objects, the concept-modelling approach

does not distinguish between objects and properties; both are

defined as concepts with relationships to other concepts.

In principle, concept modelling is an object-oriented

approach, but there are two important aspects that distinguish

it. Firstly, relationships can be added to an Individual,

disregarding the definition of the Concept from which it was

instantiated, to make it represent a specific design case.

J.P. van Leeuwen, S. Fridqvist / Computers in Industry 57 (2006) 809–816 811
Secondly, the connection between an Individual and a Concept

creates a strongly typed modelling environment. However,

since this connection can be modified, it is also dynamic,

supporting the conceptual evolution that is characteristic of

design processes. Such ‘change of concept’ could be triggered,

for example, by a search algorithm that has found a better match

for the particular Individual’s properties. Concept modelling is

designed to provide flexibility to end-users, such that they can

determine what concepts to use in modelling and how to deal

with non-typical situations in the model [14].

Concept modelling supports a layered approach to schema

modelling, whereby standards can be broken down into smaller

entities that are comparatively easy to construct and maintain.

The current monolithic approaches seek to include everything

into one schema, both vertically and horizontally. The layered

approach allows schemas to be broken down vertically, i.e.

basic modelling concepts can be modelled apart from the

higher-level concepts that build upon the basic ones. The

layered approach also works horizontally, by separating

relatively unrelated branch-specific parts. Thus, the layered

approach allows schemas to be compartmentalized, so that

parts of the schema can be developed and maintained

independently of other parts. One benefit would be that basic

layers, whereupon much relies, could achieve very long life-

spans, while simultaneously allowing highly specific top-level

layers to be changed as needed with little trouble, thanks to the

small size of the involved group of users. Another benefit is that

communication between schema-wise incompatible systems

might still be partially successful based on a lower, common

level schema. This, obviously, would support collaboration, but

also alleviate some of the troubles of schema mapping.

Research in the Design Systems group at Eindhoven

University of Technology has resulted in the development of

a technological framework for concept modelling. The work

has been implemented in the form of an application-

programming interface (API) [15]. Prototype testing of the

API has successfully demonstrated the following functionality:
� O
bject data management for concept modeling: The API

makes available a core object model that can be used to

describe both design concepts and individual designs. Data

are organised using namespace functionality similar to that in

XML.
� O
bject-based version control and timeline management: The

API implements version control and maintains a timeline for

each object (concepts and individuals). This serves multiple

purposes, including improved consistency and reliable multi-

user access.
� U
ser management and authentication: The API is prepared

for multi-user environments and provides functionality for

ownership and role-assignment per object.

Current research investigates the rationale and implementa-

tion of:
� C
oncept recognition: This is a kind of pattern-matching

approach that enables users to find concepts that suit a
particular network of individuals. An example application of

this technology is to search for products whose concept

description matches the required properties specified by a

designer.
� R
emote object sharing: The core model transparently deals

with remote objects in a network of systems that are based on

the API. This implementation makes use of the standard

HTTP and SOAP protocols.
2.1. Related research

Concept modelling has been developed as a theory and later

implemented in a framework over the past several years

[16,17,13,18]. It was inspired by the technology of feature

modelling and how this technology can be used in conceptual

design stages; examples are the work at the Design Automation

Laboratory of Arizona State University [19] and at the

Technical University of Delft [20–22].

Internationally, the paradigms of schema evolution and

model flexibility have been recognised as essential innovations,

answering to restrictions that standardisation efforts fail to

address. Similar research has been conducted by Eastman at

UCLA and later at Georgia Institute of Technology on

evolution of schemata [23,24]; at Lund University of

Technology on property-oriented modelling [25,26]; and at

Deakin University on design knowledge management [27].

Parallel to this work, XML has emerged as a technology that

addresses the same issues of extensibility and flexibility in

modelling and communicating information [28]. Hence, it is

fruitfully utilised in the concept-modelling developments. In a

simplified view, the concept-modelling paradigm could be

compared to an XML Schema that specifies a limited set of

attributes to elements, which enables us to provide certain

reasoning mechanisms that support the interpretation of the

information.

3. Distributed object management

Two aspects of the current state of the implementation of the

concept-modelling framework are discussed in this section.

Both pertain to the management of distributed objects in a

network of design and engineering information.

3.1. Object-based access control

Controlled and authenticated access to shared information

resources is a prerequisite for computer supported collaborative

design. This involves defining various levels of access, in order

to control if users are authorised to perform the requested

operations on information. In the concept-modelling frame-

work, access-levels are used to govern reading, copying, using,

referring to, and editing information. Editing is controlled by a

checkout-and-commit mechanism that works on single objects.

Users have to check out an object, marking it as being under

revision, before they can make changes to it. Once the changes

are made, the object is committed back to the source and stored

as a new version or revision (see Section 3.2). The checkout

J.P. van Leeuwen, S. Fridqvist / Computers in Industry 57 (2006) 809–816812
mechanism can be applied to function automatically or

manually in software applications based on the framework.

This is related to three modes of editing that are distinguished:
� I
nstantaneous editing is required when changes made by one

user should instantly be visible to other users. This mode of

working is applied, for example, in virtual workspaces when

users collaborate synchronously on a design and need to see

and communicate about each other’s modifications in real

time. During such an operation, the changes to the coordinates

are instantly and continuously made available to all users.
� I
ntermittent editing is sufficient when users do not need to

have instant updates of modifications in synchronous

collaboration sessions. The changes are made available to

others only when the user has committed them.
� O
ff-line editing is relevant when network facilities are not

permanently available. Objects remain checked out for a

longer period and changes are committed only the next time a

user is online.

The implementation of the concept-modelling framework

uses remote data access and ensures that multiple accesses to an

object actually address one single object.

3.2. Object-based version management

The concept-modelling approach structures and organises

information on the basis of objects, rather than documents.

Hence, version control is necessary on the level of objects. In

the remainder of this paper ‘object’ is used to denote all objects

for which version information is maintained: Concepts,

Individuals, and components of Concepts as well as Individuals.

3.2.1. Why object versions?

Maintaining versions of objects representing a design is

interesting for the purpose of documenting alternatives of that

design. Additionally, in the context of collaborative design,

version management of objects is important to maintain the

consistency of an object model that is accessed by multiple

users. Changes to objects will be administered through the

creation of versions and revisions. This ensures that the state of

objects recorded in previous versions will remain available.

References between objects can make use of the version

information of objects, so that the data consistency is not

compromised when new versions are created. Semantic

consistency is, of course, not ensured by the implementation

of object version management.

In literature, version control at the object level is described

by Cellary and Jomier [29], who use so-called ‘stamps’ to

identify object versions in multi-version databases; by

Bernstein [30], proposing basic operations on versions that

are identified through a succeeds relationship; and by Kimber

et al. [31] who describe referent tracking documents as a means

to control version information through hyperlink management.

Administering versions and revisions of objects provides a

means to record the changes to objects. In combination with

authenticated access, it is possible to trace the changes of
objects to the users who made those changes. Having a record

of the history of each object also facilitates the browsing and

restoring of previous states of a design model. This has

potential for quality control, but also for design education and

research, e.g., to present a narrative of design processes.

3.2.2. Levels of versions

Version information for objects in the concept-modelling

framework is structured in three levels. In the top two levels, an

integer number is used to identify versions: one for major

versions and another for minor versions. Numbering starts at 1

and minor version numbering is restarted within each major

version. New major versions may be initiated either by the user

when he regards the changes significant enough for a new major

version, or by the system when the changes are such that

consistency problems are likely to arise in other places of the

model. For example, a new major version is created by the system

when a component is removed, because existing references to the

concept may rely on the presence of the component.

The third level of version information is for revisions and time

management. When an object is checked out for editing, it will

remain under revision until it is submitted again as a new version.

Also, new objects are initially under revision until they are

submitted. Revisions are identified by their creation time. The

revision information is also maintained for versions of objects, so

the timestamp is available for each object version as well.

In the concept-modelling framework, either committing a

revision or submitting a version concludes an editing activity. If

this is done manually or automatically depends on the

implementation in the application that is based on the

framework. An implication is that, once committed or

submitted, revisions and versions are fixed and can no longer

be changed. Changes on objects will always lead to the creation

of new revisions or versions. On the one hand, this helps to

ensure consistency in the model. On the other hand, it calls for

smart ways of referencing objects, such that up-to-date

information is used when referring to an object. This is

discussed further in Section 3.2.4.

3.2.3. Timeline management

Versions and revisions of objects have timestamps that

designate their lifetime. Because each version of an object is also

a revision, we will refer to ‘revision’ in this text to indicate both.

Each revision of an object always has a ‘valid from’ timestamp,

indicating the moment this revision was created. When a revision

becomes outdated, either because the object was deleted or

because a newer revision was created, this revision will also get a

‘valid to’ timestamp. This concludes the lifetime of the particular

revision. Subsequent revisions together form the lifetime of an

object. Normally, the ‘valid from’ timestamp of a revision

corresponds to the ‘valid to’ timestamp of its predecessor. An

exception is when a previously deleted object is revived. In that

case, the timeline of revisions will show a gap. Fig. 1 shows the

graphical notation that is used for the representation of timelines

of objects. Blocks indicate the beginning and ending of a

particular revision’s lifespan; an arrowhead denotes ‘no ending

time’ meaning that the revision is the current one.

J.P. van Leeuwen, S. Fridqvist / Computers in Industry 57 (2006) 809–816 813

Fig. 1. Elements of the graphical notation of revision timelines.

Fig. 3. More complex example of a Concept’s timeline. Component a first

changes its reference and is later removed altogether, leading to a new major

version for Concept C1.
Using the examples in the following figures, we will

examine the functioning of the timeline of objects. Fig. 2 shows

a Concept C1 that was created at time t1 and a Concept C2 that

was created at time t2. Component a that refers to C2, was

created and added to C1 at time t3. The addition of this

component to C1 signifies a new minor version of C1. At point

t5, a new version of component a was created (for example,

because its cardinality was enlarged).

Note that this does not result in a new version of Concept C1

that owns it. The deletion of component b, however, results in a

new major version of C1 at point t6.

The timeline management of objects makes it possible for

the system to find the correct references at any particular

moment in time. A change to Concept C2, as shown at point t9

in the timeline, is thus automatically taken into account when

the reference from C1 through its component a is followed at

the current moment in time, indicated as now. The mechanism

that deals with this follows the timelines of related components

and Concepts to their most recent revisions that are alive at a

given moment in time. When we want to examine the state of

Version 1.3 of C1, this mechanism would look up the ‘valid to’

timestamp of C1’s Version 1.3 and subsequently find the

component b Version 1.1 and component a Version 1.2 whose

‘valid from’ and ‘valid to’ times straddle this timestamp.

Following component a, Version 1.1 of Concept C2 would be

found as the version that is relevant for C1’s Version 1.3.

Looking at the latest revision of Concept C1 this way (now),

the reference to Concept C2 by component a will be followed to

the latest Version 2.1 of C2.

A more complex example is shown in Fig. 3 where a new

version of component a was created at point t5 by changing its

reference from C2 to C3. C2 was then deleted at point t6.

Component a itself was deleted at point t10, leading to a new

major version of Concept C1.
Fig. 2. Example of a timeline of a structure of Concepts.
3.2.4. Using the version control mechanism

References in the concept-modelling framework are made

with an indication of the level of version information that

should be included in the reference. The levels used in

references are minor, major, and logical, as shown in Fig. 4.

Making a reference to an object without any version

information signifies a reference to the logical object (see

component a in Fig. 4). Such a reference will always point to

the most recent revision of the referred object at the given

moment in time. By including version information, the

reference can be restricted to either a particular major version

or a particular minor version. When a major version is

referenced, the latest minor version within the major version is

used. References at the level of revisions are not relevant, since
Fig. 4. Four version-levels of detail exist: logical object, major version, minor

version, and revision. References to objects can be made to the first three of

these levels.

J.P. van Leeuwen, S. Fridqvist / Computers in Industry 57 (2006) 809–816814
the level of revisions is intended for editing purposes only and

cannot be used for making references.

Looking again at Fig. 2, the reference from component a to

Concept C2 at the moment now can result either in the retrieval

of Version 1.2, for example in case the reference was made to

the major Version 1, or in the retrieval of Version 2.1 if the

reference was made to the logical object C2.

Because revisions and versions, once submitted to the system,

cannot be removed anymore, the term ‘deletion’ gets a special

meaning. When an object is deleted, its latest revision is marked

as ended by setting its ‘valid to’ timestamp. References to the

existing versions can still be made, but in the de-referencing

mechanism their timeline will be taken into account.

One of the advantages of having version control on the

level of objects is that ‘undo’ operations can be performed at

the object level as well. ‘Undo’ in this context means to re-

establish a previous revision. This does not lead to a factual

revival of the particular revision, but to the creation of a new

revision that has the state of the previous one. Strictly

speaking, ‘undo’ is thus not supported, but the re-establishing

of any earlier state of an object is, which is in fact a richer

mechanism.

3.2.5. Subscription and notification

In a collaborative design situation, changes to objects made by

one user are often of interest to other users. To get informed of

such changes, a user can subscribe to notifications issued by an

object. If the subscription request was accepted, the notification

is handled autonomously by the system and may lead to an

automatic update of references or even an automatic upgrade of

object versions. The right to subscribe to an object is one of the

access rights that the owner of an object can grant to other users,

which is a necessary restrictive mechanism built into the system

to be able to limit the amount of communication.

4. Benefits and potential

The concept-modelling framework proposes to model

design information using a distributed object model. This

model provides controlled, multi-user access to both con-

ceptual and instantiated information that is structured in a very

flexible manner. It integrates information that remains at the

source and in this manner provides a means to integrate

business processes. The advantages of this approach include:
� in
tegration of business processes through data sharing;
� e
nhanced consistency and reduced redundancy;
� c
ontrol of information remaining with the owner;
� p
otential to connect a large variety of data sources;
� a
uthenticated and authorised access control in combination

with version management.

Although the concept-modelling framework is developed

from the requirements identified in the construction industry, its

principles and functionality are generic to product design. The

potential of this technology therefore reaches many engineering

disciplines and, for example, the discipline of industrial design.
5. Research agenda for CSCW

From the current state of the work on the concept-modelling

framework we defined a research agenda for the further

development of CSCW. Although we have defined this agenda

based on the concept-modelling framework, we expect it to

have general significance for the construction industry.

With the capabilities of direct access to remote data, be it

through the concept-modelling framework or through other

web services, the industry will show an increasing need for

design and engineering software that can transparently deal

with remote data. Having access to shared or exchanged

documents that are made available through networks will no

longer be sufficient when distributed object models become the

prevalent means to structure and manage information.

Although a technology such as the concept-modelling

framework and the more generic technology of web services

provide a means to technically design such ‘remoting-enhanced’

software, the impact on the working methods will be dramatic

and the actually supported design and engineering processes may

well need to be rethought. Fundamental research, not only from a

software engineering point of view, but from within the

construction industry, will be required to address this issue.

As was seen with the advent of using digital media to

exchange design and engineering information, the standardisa-

tion of communication protocols will be essential for a

successful uptake in the industry. While institutional and de-

facto standards have appeared for the exchange of product data

in documents, a similar standardisation will be necessary for the

communication between applications that utilise distributed

object models. The access of end-users to the schemata of such

models, as is provided in the concept-modelling framework,

increases the complexity of the required protocols. However,

this perceived complexity should not lead to the conclusion that

standardisation at this level is not feasible. Standardisation at

this level will be necessary to achieve open-ended solutions that

will be acceptable by the industry as justifiable investments.

Some specific areas of design and engineering support will be

further developed using the technology in the concept-modelling

framework. Initial research results have been published on the

implementation of case-based reasoning techniques that utilise

the concept-modelling approach [32]. Enabling case-based

reasoning tools to access structured, remote data in a transparent

manner will increase their capabilities and the scope of the

reasoning mechanisms significantly.

Building on results from ongoing research at Eindhoven

University of Technology on multi-agent systems [33–36],

enhanced approaches to support design and planning processes

with autonomous agents representing specific domain knowl-

edge will be investigated. These agents can benefit from the

flexibility of the concept-modelling framework and the

accessibility of remote data through the framework.

Other forms of creativity support that are currently under

development in the Design Systems group will be able to benefit

from the capabilities of the concept-modelling approach. The

work by van der Zee and de Vries [37] on genetic algorithms aims

to generate innovative solutions by combination of existing

J.P. van Leeuwen, S. Fridqvist / Computers in Industry 57 (2006) 809–816 815
successful cases. The work by Heylighen and Segers [38] focuses

on using linguistic relationships between concepts. Different

terminology used for similar concepts potentially forms a

limitation to the concept-recognition algorithm. Linguistic

relations such as synonyms, hyponyms, etc., can be used to

address this limitation by expanding the search space. Integration

of this work with the concept-modelling paradigm is expected to

lead to mutual benefits.

References

[1] T. Kvan, Collaborative design: what is it? Automation in Construction 9

(2000) 409–415.

[2] T. Kvan, L. Candy, Designing collaborative environments for strategic

knowledge in design, Knowledge-Based Systems 13 (2000) 429–438.

[3] G.L.M. Augenbroe, S.R. Lockley, Project management issues in remote

CAD outsourcing, in: M.A. Lacasse, D.J. Vanier (Eds.), Durability of

Building Materials and Components 8, Institute for Research in Con-

struction, Ottawa, Canada, 1999, pp. 2559–2568.

[4] C.M. Eastman, Managing integrity in design information flows, Computer

Aided Design 28 (1996) 551–565.

[5] Z. Turk, Communication workflow approach to CIC, in: R. Fruchter, F.

Pena-Mora, K. Rodis (Eds.), Computing in Civil and Building Engineer-

ing, 2000, 1094–1101.

[6] C.M. Eastman, Building Product Models: Computer Environments Sup-

porting Design and Construction, CRC Press LLC, Boca Raton, FL, USA,

1999.

[7] G.L.M. Augenbroe (Ed.), COMBINE 2 Final Report, CEC Report HOU2-

CT92-0196, Delft University of Technology, Delft, 1995.

[8] ISO-10303. ISO PAS 12006, Building Construction—Organization of

Information about Construction Works—Part 3: Framework for Object-

Oriented Information Exchange, 2000.

[9] A. Kiviniemi, IAI and IFC—state-of-the-art, in: M.A. Lacasse, D.J.

Vanier (Eds.), Information Technology in Construction, vol. 4, Vancou-

ver, Canada, 1999.

[10] K. Woestenenk, Implementing the LexiCon for practical use, in: G.

Gudnason (Ed.), Construction Information Technology, Reykjavik, Ice-

land, 2000.

[11] M. Böhms, F. Tolman, Building and construction eXtensible mark-up

language (bcXML), in: G. Coetzee, F. Boshoff (Eds.), IT in Construction

in Africa, Mpumalunga, South Africa, 30 May–1 June, 2001.

[12] F. Tolman, J. Stephens, R. Steinmann, R. van Rees, M. Böhms, A. Zarli,

bcXML, an XML vocabulary for building and construction, in: Sympo-

sium Report on the 2nd Worldwide ECCE Symposium. Information and

Communication Technology in the Practice of Building and Civil Engi-

neering, RIL—Association of Finish Civil Engineers, Espoo, Finland, 6–8

June, 2001.

[13] J.P. van Leeuwen, Modelling architectural design information by features,

Ph.D. Thesis, Eindhoven University of Technology, Department of Archi-

tecture, Building, and Planning, Eindhoven, The Netherlands, 1999.

[14] J.P. van Leeuwen, S. Fridqvist, Design knowledge sharing through internet

application, in: Proceedings of CE 2002, International Conference on

Concurrent Engineering, Cranfield, UK, 27–31 July, 2002.

[15] J.P. van Leeuwen, S. Fridqvist, Supporting collaborative design by type

recognition and knowledge sharing, Electronic Journal of Information

Technology in Construction (2002) 8.

[16] J.P. van Leeuwen, H. Wagter, R.M. Oxman, Information modelling for

design support—a feature-based approach, in: Proceedings of the 3rd

Conference on Design and Decision Support Systems in Architecture and

Urban Planning, Spa, Belgium, (1996), pp. 304–325.

[17] J.P. van Leeuwen, H. Wagter, Architectural design-by-features, in: Pro-

ceedings of CAAD Futures’97, TU München, München, Germany, 1997,

pp. 97–115.

[18] J.P. van Leeuwen, A. Hendricx, S. Fridqvist, Towards dynamic informa-

tion modelling in architectural design, in: Construction Information
Technology—Proceedings of CIB W78, Mpumalanga, South Africa, 30

May–1 June, 2001.

[19] J.J. Shah, M. Mäntylä, Parametric and Feature-Based CAD/CAM, Wiley

& Sons, New York, 1995.

[20] W.F. Bronsvoort, F.W. Jansen, Feature modelling and conversion—key

concepts to concurrent engineering, Computers in Industry 21 (1993) 61–

86.

[21] W.F. Bronsvoort, F.W. Jansen, Multi-view feature modelling for design

and assembly, in: J.J. Shah, M. Mäntylä, D.S. Nau (Eds.), Advances in

Feature Based Manufacturing, Amsterdam, Elsevier Science, The Nether-

lands, 1994, pp. 315–330.

[22] W. van Holland, W.F. Bronsvoort, F.W. Jansen, Feature modelling for

assembly, in: W. Straszer, F. Wahl (Eds.), Graphics and Robotics.,

Springer-Verlag, Berlin, Germany, 1995, pp. 131–148.

[23] C.M. Eastman, Information exchange architectures for building models,

in: M.A. Lacasse, D.J. Vanier (Eds.), Durability of Building Materials and

Components 8, Institute for Research in Construction, Ottawa, Canada,

1999, pp. 2139–2156.

[24] C.M. Eastman, T.S. Jeng, A database supporting evolutionary product

model development for design, Automation in Construction 8 (1999) 305–

324.

[25] S. Fridqvist, Property-oriented information systems for design, Ph.D.

Thesis, Lund Institute of Technology, Department of Construction and

Architecture, Lund, Sweden, 2000.

[26] A. Ekholm, Principles for classification of properties of construction

objects, in: K. Agger, P. Christiansson, R. Howard (Eds.), Distributing

Knowledge in Building—CIB W78 Conference Proceedings, Aarhus,

Denmark, 2002.

[27] S. Datta, Managing design knowledge with mixed-initiative dialogue, in:

H.J.P. Timmermans, B. De Vries (Eds.), Design and Decision Support

Systems in Architecture, Eindhoven University of Technology, Eindho-

ven, The Netherlands, 2002.

[28] W3C-XML, Extensible Markup Language (XML) 1.0, second ed., World

Wide Web Consortium Recommendation, 6 October 2000, http://

www.w3.org/TR/REC-xml, 2000.

[29] W. Cellary, G. Jomier, Consistency of versions in object-oriented data-

bases, in: Proceedings of the 16th VLDB Conference, Brisbane, Australia,

(1990), pp. 432–441.

[30] P.A. Bernstein, Repositories and object-oriented databases, in: Dittrich,

Geppert (Eds.), Datenbanksysteme in Buro, Technik und Wissenschaft

(Proceedings of BTW Conference), Springer-Verlag, Berlin, Germany,

1997.

[31] W.E. Kimber, S. Newcomb, P. Newcomb, Version management as hyper-

text application: referent tracking documents, in: B.T. Usdin (Ed.),

Proceedings of Markup Technologies’99, Philadelphia, PA, USA, Decem-

ber 7–9, (1999), pp. 185–198.

[32] S. Fridqvist, J.P. van Leeuwen, Feature type recognition—implementation

of a recognizing feature manager, in: Distributing Knowledge in Build-

ing—Proceedings of CIB W78, Aarhus, Denmark, 2002.

[33] T.A. Arentze, H.J.P. Timmermans, A multi-agent model of negotiation

processes between multiple actors in urban developments: a framework

and results of numerical experiments, Environment and Planning B:

Planning and Design 30 (2003) 391–410.

[34] J. Dijkstra, H.J.P. Timmermans, Towards a multi-agent model for visua-

lizing simulated user behavior to support the assessment of design

performance, Automation in Construction 11 (2002) 135–145.

[35] H.H. Achten, A.J. Jessurun, An agent framework for recognition of

graphic units in drawings, in: K. Koszewski, S. Wrona (Eds.), Proceedings

of the 20th International Conference on Education and Research in

Computer Aided Architectural Design in Europe, Warsaw University of

Technology, Warsaw, Poland, 2002, pp. 246–253.

[36] J. Beetz, J.P. van Leeuwen, B. De Vries, Towards a multi agent system for

the support of collaborative design, in: J.P. van Leeuwen, H.J.P. Timmer-

mans (Eds.), Proceedings of the Seventh International Conference on

Design & Decision Support Systems in Architecture and Urban Planning,

Eindhoven, The Netherlands, 2–5 July, 2004.

[37] A. van der Zee, B. De Vries, Computer Aided Evolutionary Architectural

Design. Fifth International Conference onGenerative Art, Milan, Italy, 2002.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

J.P. van Leeuwen, S. Fridqvist / Computers in Industry 57 (2006) 809–816816
[38] A. Heylighen, N.M. Segers, An architectural Shift + F7—supporting

concept development through design cases, in: Proceedings of the

ARCC/EAAE 2002—International Conference on Architectural

Research, Montreal, Canada, 2002.

[39] http://www.iai-international.org/.

J.P. van Leeuwen is associate professor in colla-

borative design at the Design Systems Group in the

Department of Architecture, Building, and Planning

at Eindhoven University of Technology. He has a

background in architectural engineering, commercial

software development, and scientific research in

building information technology. His research inter-

ests include digital design, collaborative design,

design information modelling, product modelling,

and design knowledge representation. He is co-ordi-
nator of a Master of Science programme on design & decision support systems,

supervisor of MSc students and co-supervisor of PhD candidates on collabora-

tive design. He holds an MSc and PhD degree from Eindhoven University of

Technology, The Netherlands.

S. Fridqvist holds an Architect’s degree and a PhD

from Lund Institute of Technology, Sweden, where

he conducted research and development in the area of

computer aided architectural design for some 15

years. He was affiliated as post-doctoral researcher

with Eindhoven University of Technology, The Neth-

erlands, for two years. His research interests focus on

information systems for product representation, spe-

cifically on what requirements the design process

poses on such systems, and on ways to augment the
design and production process with semantically rich product representations.

http://www.iai-international.org/

	An information model for collaboration in the construction Industry
	Collaborative design
	State-of-the-art in CSCW
	Identified problems

	Concept modelling
	Related research

	Distributed object management
	Object-based access control
	Object-based version management
	Why object versions?
	Levels of versions
	Timeline management
	Using the version control mechanism
	Subscription and notification

	Benefits and potential
	Research agenda for CSCW
	References

